LTN Servotechnik GmbH

LT

PRODUCT BROCHURE - RESOLVERS QUALITY COMBINED WITH HIGH VERTICAL INTEGRATION

www.motiontech.com.au

LTN Servotechnik GmbH Georg-Hardt-Strasse 4 83624 Otterfing, Germany T +49 8024 6080-0 F +49 8024 6080-1000 Itn@ltn.de www.ltn-servotechnik.com

Managing Directors: Alexander Tewes, Dr. Thomas Zentis Trade register: München HRB 121158

Subject to change without prior notice. Issued 10/2022

LTN SERVOTECHNIK GMBH		4
LTN PRODUCTS		5
OVERVIEW RESOLVERS		6
FRAMELESS RESOLVERS	- RE15 - RE21	8 10
HOUSED RESOLVERS	- R36 - R58 - R71	12 14 16
RESOLVER CONVERTER	- G-REC - G-RDC - G-RCC	18 20 22

ABOUT US

LTN Servotechnik GmbH is a manufacturer of customized transmission and feedback systems located in the south of Munich. For over 40 years we have continuously specialised in the development, design and series manufacture of components for apparatus, machinery and plant engineering customers worldwide.

Our product range includes slip rings for power, signal and data, resolvers for open & closed-loop control tasks and rotary joints for fiber-optic information systems. Our product portfolio are characterised by extraordinary diversity.

SLIP RINGS

Slip rings are electromechanical components which allow electrical power, signal and data transmission between stationary and rotating systems. The spectrum ranges from just a few mV or mA to many hundreds A and few thousand V. Our slip ring systems withstand harsh environmental influences such as corrosive, salty air or severe vibration. LTN slip ring systems are found in many electrical machines and ensure the reliable functionality of entire machine systems.

LTN slip rings meet all the requirements for error-free transmission of real time fieldbus systems. Of course, all our Fast, Gigabit and 10 Gigabit Ethernet slip rings are certified according to TIA-568 and EN 50173.

Our components conform to the highest standards of durability, sensitivity and reaction time and are therefore an important part of automation, robotics and all other highly dynamic applications.

In addition, we offer fiber-optic rotary joints for contactless transmission of high data rates. RESOLVERS

Resolvers convert the angular position of a rotor to two voltages. The absolute position can be represented clearly in this way. Modern resolvers are usually brushless and the information is transmitted through induction. Resolvers provide an absolute signal within a single revolution and therefore do not have to be calibrated after switching on.

Resolvers are used for open and closed-loop control tasks such as electric servo drives, positioning drives and machines with interdependent motors. The robustness and availability of the systems are of central importance. Our brushless resolvers operate without wear and are fail-safe – even in the harshest environmental conditions (e.g. extreme temperatures).

In addition, we offer electrical circuits for evaluating the resolver's analogue output signals. Rotary encoder output signals can be emulated, for example. Using our downstream electronics, the analogue signal can also be digitized.

OVERVIEW RESOLVERS

Transmission ratio: 0.3 / 0.5 / 1Operating temperature: -55 °C ... +155 °C Connection: Leads, cables, clamp terminals and length on request

Stated values are standard. Other configurations, customized versions and resolver combinations are available on request. Combinations consisting of slip rings and resolvers on request.

Туре		Min. outer diameter	Max. hollow shaft diameter
Framoloss	RE15	36 mm	12 mm
	RE21	52 mm	20 mm
	R36	36 mm	11 mm
Housed	R58	58 mm	17 mm
	R71	71 mm	20 mm

Stated values are standard. Other configurations are available on request.

Max. shaft diameter	Pole pairs	Acurracy	Input current (can vary by types)	Page
on request	1/3/4	± 4' / ± 6' / ± 10'	58 mA at 7 V & 5 kHz	8
on request	1/3/5	± 4' / ± 6' / ± 10'	47 mA at 7 V & 5 kHz	10
on request	1/3/4	± 4' / ± 6' / ± 10'	65 mA at 7 V & 5 kHz	12
12 mm	1/3/4	± 6′ / ± 10′	58 mA at 7 V & 5 kHz	14
12 mm	1/3/5	± 6' / ± 10'	47 mA at 7 V & 5 kHz	16

- Hollow shaft Ø: max. 12 mm
- Outer Ø: 36 mm
- Length: 16 mm

OPERATING PRINCIPLE

Input: $E(R1-R2) = E \cdot sin(\omega \cdot t)$ Output: $E(S1-S3) = TR \cdot E(R1-R2) \cdot \cos \theta$ $E(S2-S4) = TR \cdot E(R1-R2) \cdot \sin \theta$ TR = Transformation ratio

Inner diam. stator = 22.820 min. Outer diam. rotor = 22.350 max. Positive counting direction : Rotor cw as viewed (cw ---)

Inner diam. stator = 22.820 min. Outer diam. rotor = 22.350 max. Positive counting direction : Rotor cw as viewed (cw ---)

axial offset operational tolerance 1)

300 mm Teflon leads AWG28 (0±0.3)¹⁾ CW Ø 9.52 H8 (^{+0.027} Ø 36 h7 (0.025) Z (2:1) 36.3.03 Ø41⁰.2 ö Ζ 3^{+0.15} 3_0.2 16.1±0.1

axial offset operational tolerance

1)

Туре	RE-15-1-XXX	RE-15-3-XXX	RE-15-4-XXX
Pole Pairs	1	3	4
Transformation Ratio	0,5 ±10%	0,5 ±10%	0,5 ±10%
Input Voltage	7 V	7 V	7 V
Input Current	65 mA 7 V & 5 kHz	50 mA 7 V & 4 kHz ± 10%	53 mA 7 V & 5 kHz
Phase Shift	13° ±3° 7 V & 5 kHz	15° ±3° 7 V & 4 kHz	18° ±3° 7 V & 5 kHz
Acuracy	± 10'/20' spread ± 4/6' on request	± 5'/9' spread	± 6'/12' spread
Null Voltage	≤ 30 mV	≤ 30 mV	≤ 30 mV
Operating Temperature	-55 °C +155 °C	-55 °C +155 °C	-55 °C +155 °C
R1-R2 DC Resistance at room temperature	37 Ohm ± 10%	34 Ohm ± 10%	25 Ohm ± 10%
S1-S3/S2-S4 DC Resistance at room temperature	102 Ohm ± 10%	380 Ohm ± 10%	231 Ohm ± 10%
Max. Permissible Speed	≤ 20.000 rpm	≤ 20.000 rpm	≤ 20.000 rpm
Shock	≤ 1.000 m/s2 (11 ms)	≤ 1.000 m/s2 (11 ms)	≤ 1.000 m/s2 (11 ms)
Vibration	≤ 500 m/s2 10500 Hz	≤ 500 m/s2 10500 Hz	≤ 500 m/s2 10500 Hz
High Pot Test Voltage Housing/Winding	\leq 500 VAc 50 Hz & 3 s	\leq 500 VAc 50 Hz & 3 s	\leq 500 VAc 50 Hz & 3 s
High Pot Test Voltage Winding/Winding	≤ 250 VAC $$ 50 Hz & 3 s $$	≤ 250 VAC $$ 50 Hz & 3 s $$	\leq 250 VAC $$ 50 Hz & 3 s $$
Rotor / Stator	completely impregnated	completely impregnated	completely impregnated
Lead Length	AWG 28 min. 300 mm	AWG 28 min. 300 mm	AWG 28 min. 300 mm

- Hollow shaft Ø: max. 17 mm
- Outer Ø: 52 mm
- Length: 26 mm

OPERATING PRINCIPLE

Inner diam. stator = 33.500 min. Outer diam. rotor = 32.725 max. Positive counting direction : Rotor cw as viewed (cw -----)

1)

axial offset

operational tolerance

Input: $E(R1-R2) = E \cdot sin(\omega \cdot t)$ Output: $E(S1-S3) = TR \cdot E(R1-R2) \cdot \cos \theta$ $E(S2-S4) = TR \cdot E(R1-R2) \cdot \sin \theta$ TR = Transformation ratio

Inner diam. stator = 33.500 min. Outer diam. rotor = 32.725 max. Positive counting direction : Rotor cw as viewed (cw \rightarrow)

Requirements to customer assembling interface

ØD

pø

A

1 0.025 A

1 0.040 A

QQ

axial offset 1) operational tolerance

25.6_0.2

Ζ

Туре	RE-21-1-A04	RE-21-1-A05	RE-21-1-A06
Pole Pairs	1	1	1
Transformation Ratio	0,5 ±10%	0,5 ±10%	0,5 ±10%
Input Voltage	7 V	7 V	7 V
Input Current	40 mA 7 V & 5 kHz	70 mA 7 V & 4 kHz ± 10%	45 mA 7 V & 4 kHz ± 10%
Phase Shift	10° ±3° 7 V & 5 kHz	8° ±3° 7 V & 4 kHz	8° ±3° 7 V & 4 kHz
Acuracy	± 6'/10' spread	± 5'/9' spread	± 6'/12'' spread
Null Voltage	≤ 30 mV	≤ 30 mV	≤ 30 mV
Operating Temperature	-55 °C +155 °C	-55 °C +155 °C	-55 °C +155 °C
R1-R2 DC Resistance at room temperature	90 Ohm ± 10%	48 Ohm ± 10%	61 Ohm ± 10%
S1-S3/S2-S4 DC Resistance at room temperature	72 Ohm ± 10%	31 Ohm ± 10%	53 Ohm ± 10%
Max. Permissible Speed	≤ 20.000 rpm	≤ 20.000 rpm	≤ 20.000 rpm
Shock	≤ 1.000 m/s2 (11 ms)	≤ 1.000 m/s2 (11 ms)	≤ 1.000 m/s2 (11 ms)
Vibration	≤ 500 m/s2 10500 Hz	≤ 500 m/s2 10500 Hz	≤ 500 m/s2 10500 Hz
High Pot Test Voltage Housing/Winding	≤ 500 VAc 50 Hz & 3 s	≤ 500 VAc 50 Hz & 3 s	≤ 500 VAc 50 Hz & 3 s
High Pot Test Voltage Winding/Winding	≤ 250 VAC 50 Hz & 3 s	≤ 250 VAC 50 Hz & 3 s	≤ 250 VAC 50 Hz & 3 s
Rotor / Stator	completely impregnated	completely impregnated	completely impregnated
Lead Length	AWG 24 min. 300 mm	AWG 24 min. 300 mm	AWG 24 min. 300 mm
Туре	RE-21-1-A07	RE-21-3-XXX	RE-21-5-XXX
Pole Pairs	1	3	5
Transformation Ratio	1 ±10%	0,5 ±10%	0,5 ±10%
Input Voltage	7 V	7 V	7 V
Input Current	40 mA 7 V & 4 kHz ± 10%	40 mA 7 V & 4 kHz ± 10%	34 mA 7 V & 5 kHz
Phase Shift	14° ±3° 7 V & 4 kHz	14° ±3° 7 V & 4 kHz	16° ±3° 7 V & 5 kHz
Acuracy	$\pm 6712^{\circ}$ spread	$\pm 6710^{\circ}$ spread	$\pm 577^{\circ}$ spread
Operating Temperature	$\leq 50 \text{ min}$		S SU 111V -55 °C +155 °C
R1-R2 DC Resistance at room temperature	90 Ohm ± 10%	90 Ohm ± 10%	49 Ohm ± 10%
S1-S3/S2-S4 DC Resistance at room temperature	260 Ohm ± 10%	72 Ohm ± 10%	820 Ohm ± 10%
Max. Permissible Speed	≤ 20.000 rpm	≤ 20.000 rpm	≤ 20.000 rpm
Shock	≤ 1.000 m/s2 (11 ms)	≤ 1.000 m/s2 (11 ms)	≤ 1.000 m/s2 (11 ms)
Vibration	≤ 500 m/s2 10500 Hz	≤ 500 m/s2 10500 Hz	≤ 500 m/s2 10500 Hz
High Pot Test Voltage Housing/Winding	\leq 500 VAc 50 Hz & 3 s	\leq 500 VAc 50 Hz & 3 s	\leq 500 VAc 50 Hz & 3 s
High Pot Test Voltage Winding/Winding	≤ 250 VAC 50 Hz & 3 s	\leq 250 VAC 50 Hz & 3 s	≤ 250 VAC 50 Hz & 3 s
Rotor / Stator	completely impregnated	completely impregnated	completely impregnated
Lead Length	AWG 24 min. 300 mm	AWG 24 min. 300 mm	AWG 24 min. 300 mm

- Outer Ø: 36 mm
- Hollow Shaft Ø: max. 11 mm
- Shaft: on request
- Length: 42,6 mm

Positive counting direction: Rotor cw as viewed ($X \rightarrow$

Туре	R36
Pole Pairs	1
Transformation Ratio	0,5 ±10%
Input Voltage	7 V
Input Current	65 mA 7 V & 5 kHz
Phase Shift	13° ±3° 7 V & 5 kHz
Acuracy	\pm 10'/20' spread \pm 4/6' on request
Null Voltage	≤ 30 mV
Operating Temperature	-40 °C +100 °C
R1-R2 DC Resistance at room temperature	37 Ohm ± 10%
S1-S3/S2-S4 DC Resistance at room temperature	102 Ohm ± 10%
Max. Permissible Speed	≤ 5.000 rpm
Shock	≤ 1.000 m/s2 (11 ms)
Vibration	≤ 500 m/s2 10500 Hz
High Pot Test Voltage Housing/Winding	≤ 500 VAc 50 Hz & 3 s
High Pot Test Voltage Winding/Winding	≤ 250 VAC 50 Hz & 3 s
Rotor / Stator	completely impregnated
Lead Length	AWG 28 min. 300 mm

- Shaft Ø: max. 12 mm
- Hollow Shaft Ø: max. 17 mm
- Outer Ø: 58 mm
- Customized Connector | Cable possible

OPERATING PRINCIPLE

Positive counting direction: Rotor cw as viewed ($X \rightarrow$

Туре	R58
Pole Pairs	1
Transformation Ratio	0,5 ±10%
Input Voltage	7 V
Input Current	65 mA 7 V & 5 kHz
Phase Shift	13° ±3° 7 V & 5 kHz
Acuracy	\pm 10'/20' spread \pm 4/6' on request
Null Voltage	≤ 30 mV
Operating Temperature	-40 °C +100 °C
R1-R2 DC Resistance at room temperature	37 Ohm ± 10%
S1-S3/S2-S4 DC Resistance at room temperature	102 Ohm ± 10%
Max. Permissible Speed	≤ 5.000 rpm
Shock	≤ 1.000 m/s2 (11 ms)
Vibration	≤ 500 m/s2 10500 Hz
High Pot Test Voltage Housing/Winding	\leq 500 VAc 50 Hz & 3 s
High Pot Test Voltage Winding/Winding	\leq 250 VAC 50 Hz & 3 s
Rotor / Stator	completely impregnated
Lead Length	AWG 28 min. 300 mm

- Shaft Ø: max. 12 mm
- Hollow shaft Ø: max. 20 mm
- Outer Ø: 71 mm
- Customized Connector | Cable possible

 $\begin{array}{ll} Input: & E(R1-R2) = E \cdot sin(\omega \cdot t) \\ Output: & E(S1-S3) = TR \cdot E(R1-R2) \cdot cos \ \theta \\ & E(S2-S4) = TR \cdot E(R1-R2) \cdot sin \ \theta \\ & TR = Transformation \ ratio \end{array}$

Positive counting direction: Rotor cw as viewed ($X \rightarrow$

R71-XXX-A05 Туре Pole Pairs 1 Transformation Ratio 0,5 ±10% Input Voltage 7 V Input Current 70 mA 7 V & 4 kHz ± 10% Phase Shift 8° ±3° 7 V & 4 kHz Acuracy ± 5'/9' spread Null Voltage ≤ 30 mV -40 °C ... +100 °C **Operating Temperature** 48 Ohm ± 10% R1-R2 DC Resistance at room temperature S1-S3/S2-S4 DC Resistance at room temperature 31 Ohm ± 10% Max. Permissible Speed ≤ 5.000 rpm ≤ 1.000 m/s2 (11 ms) Shock Vibration ≤ 500 m/s2 10...500 Hz High Pot Test Voltage Housing/Winding \leq 500 VAc 50 Hz & 3 s High Pot Test Voltage Winding/Winding \leq 250 VAC 50 Hz & 3 s Rotor / Stator completely impregnated Lead Length AWG 24 min. 300 mm

R71-XXX-A06

1 0,5 ±10% 7 V 45 mA 7 V & 4 kHz ± 10% 8° ±3° 7 V & 4 kHz ± 6'/12'' spread \leq 30 mV -40 °C ... +100 °C 61 Ohm ± 10% 53 Ohm ± 10% ≤ 5.000 rpm \leq 1.000 m/s2 (11 ms) ≤ 500 m/s2 10...500 Hz \leq 500 VAc 50 Hz & 3 s \leq 250 VAC 50 Hz & 3 s completely impregnated AWG 24 min. 300 mm

RESOLVER TO ENCODER CONVERTER

The LTN-REC is a position data converter. It drives autonomously a resolver sensor and converts its output signals to encoder incremental (square wave) output signals (emulates encoder signals).

G-REC (DESIGN EXAMPLE)

SPECIFICATIONS - ENCODER OUTPUT

Output Signals: Output Voltage Level:

Output Current: Dynamic Peak Current: Resolution:

Accuracy: Repeatability: Rotational speed: incremental A+, A-, B+, B-, Z+, Z-5 V (TTL), 14-36 V (HTL) limited by the supply voltage 100 mA limited, short circuit proof 1500 mA max. 12 bit / 1024 incremental steps per revolution (other resolutions on request) +/- 0.184° (+/- 11 arcmin) +/- 1/4 of incremental step up to 1000 s⁻¹ (depending on version)

RESOLVER OUTPUT / INPUT

Output Ref. Signal:

Input SIN / COS: Resolver Transformation Ratio:

POWER SUPPLY

Supply Voltage (+V_s): Power Consumption: Operating Temperature: 2.8 V_{rms} 100 mA max. 10 kHz, 5 kHz (depending on version) 1.4 V_{rms} (diff.) K = 0.5 +/- 10%

+8 to +15 V_{DC} or +14 to +36 V_{DC} ~1 W (e.g. 40 mA at 24V) 0 to +85 °C

The supply voltage can be supplied via the power connector or optionally via the data connector (from the control unit). The G-RDC is protected against the wrong polarity and transient overvoltage of power supply and short circuit proof on output terminals.

Housing: Dimensions: Phoenix Contact "ME 22,5" for top hat rail mounting I = 114,5 mm; h = 99 mm, w = 22,5 mm

CONNECTOR TERMINALS

Encoder Out (Default): Sub-D, 9-pole male -> mating connector: female		Encoder Out (DX): Sub-D, 25-pole female > mating connector: male		Resolver IN: Sub-D, 9-pole female -> mating connector: male		Power connector: 4-pole plug, screw wire connection, included		
Pin 1	GND	Pin 1	NC	Pin 1	Ref-	(R2)	Pin 1 (left)	+Vs
Pin 2	Z-		NC	Pin 2	NC		Pin 2	+Vs
Pin 3	Z+	Pin 16	NC	Pin 3	NC		Pin 3	GND
Pin 4	A-	Pin 17	A-	Pin 4	NC		Pin 4	GND
Pin 5	A+	Pin 18	В-	Pin 5	SIN+	(S2)	Max loonthrou	abod current.
Pin 6	NC	Pin 19	Z-	Pin 6	SIN-	(S4)	Iviax. iooptiliou	gneu current.
Pin 7	+Vs (Opt.)	Pin 20	A+	Pin 7	Ref+	(R1)	+Vs	Pin 1 - Pin 2: 3A
Pin 8	B-	Pin 21	B+	Pin 8	COS+	(S1)	GND	Pin 3 - Pin 4: 3A
Pin 9	B+	Pin 22	Z+	Pin 9	COS-	(S3)		
Scroop	DE	Pin 23	+Vs (Opt.)	Screen	PE			
Scieen		Pin 24	GND					
		Pin 25	GND					
		Screen	PE					

The PE connection (protective earth) is implemented over the mounting clamp to the top hat rail.

ORDERING INFORMATION

Part No.	Туре	Supply Voltage (+V _s)	Output Voltage Level	Rotational Speed	Reference Frequency
3933542	G-RECLDBI1024-5X1-15	+8 to +15 V _{DC}	5V	up to 1000 s ⁻¹	10kHz
3931647	G-RECLDBI1024-5X1-24	+14 to +36 V _{DC}	5V	up to 1000 s ⁻¹	10kHz
3932553	G-RECKIBI1024-5X1-24	+14 to +36 V _{DC}	Vs	up to 1000 s ⁻¹	10kHz
3932553-01	G-RECKIBI1024-5X1-24CX	+14 to +36 V _{DC}	Vs	up to 1000 s ⁻¹	10kHz
		Adjusted for long cabl	e lengths. Optimised for	r 130 m cable.	
1340804-01	G-RECKIBI1024-5X1-24DX	+14 to +36 V _{DC}	Vs	up to 500 s ⁻¹	5kHz
		Adjusted for long cabl	e length, tested up to 2	60 m	

RESOLVER TO DIGITAL CONVERTER

The LTN G-RDC is a position data converter. It drives autonomously a resolver sensor and converts its output signals to digital position data.

SPECIFICATIONS - CONVERTER OUTPUT / CONTROL

Output Data:	10 bit, 12 bit, 16 bit: binary position data, parallel, H-edge-active
Input Signals:	1 bit: /BIT (Error), L-edge-active 1 bit: /Inhibit, L-edge-active 1 bit: /Enable, L-edge-active
	(Both inputs can be put together)
Output Voltage Level:	TTL (5 V)
Output Current:	30 mA
Input Voltage Level:	TTL (5 V)
Resolution:	10-bit / 1024 steps per revolution
	12-bit / 4096 steps per revolution
	16-bit / 65536 steps per revolution
Accuracy:	0.072° (4 arcmin +1LSB max.)
Repeatability:	+/- 1 LSB
Rotational Speed:	10 bit: up to 1152 s ⁻¹
	12 bit: up to 520 s ⁻¹
	16 bit: up to 18 s ⁻¹
	(to be specified on order)

RESOLVER OUTPUT / INPUT

Output Ref. Signal: 4 1 5 Input SIN / COS: 2 Resolver Transformation Ratio: K

4 V_{rms} 100 mA max. 5 kHz 2 V_{rms} K = 0.5 +/- 10%

POWER SUPPLY

Supply Voltage (+Vs): Power Consumption: Operating Temperature: +10 to +36 V_{bc} ~1,5 W (e.g. 60 mA at 24 V) 0 to +85°C

The supply voltage can be supplied via the power connector or optionally via the data connector (from the control unit). The G-RDC is protected against the wrong polarity and transient overvoltage of power supply and short circuit proof on output terminals.

Housing: Dimensions: Phoenix Contact "ME 22,5" for top hat rail mounting I = 114,5 mm; h = 99 mm, w = 22,5 mm

LT

CONNECTOR TERMINALS

Data Out /Controll I/O: Sub-D, 25-pole female -> mating connector: male

Data Ou	t /Controll I/O: Sub-E	D, 25-pole female ->	mating connector: male	Resolver Sub-D. 9	IN: -pole fem	nale
	10 bit	12 bit	16 bit	-> mating	g connec	tor: male
Pin 1 Pin 2 Pin 3 Pin 4 Pin 10 Pin 11 Pin 12 Pin 13 Pin 14	Out DB1 (MSB) Out DB2 Out DB3 Out DB4 Out DB10 (LSB) NC NC NC	Out DB1 (MSB) Out DB2 Out DB3 Out DB4 Out DB10 Out DB11 Out DB12 (LSB) NC	Out DB1 (MSB) Out DB2 Out DB3 Out DB4 Out DB10 Out DB11 Out DB12 Out DB13 Out DB14	Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Pin 7 Pin 8 Pin 9	Ref- NC NC SIN+ SIN- Ref+ COS+ COS-	(R2) (S2) (S4) (R1) (S1) (S3)
Pin 14 Pin 15 Pin 16 Pin 17 Pin 18 Pin 19 Pin 20 Pin 21 Pin 22 Pin 23 Pin 23 Pin 24 Pin 25	NC NC NC	NC NC Out /BIT (Error) IN /Inhibit IN /Enable NC NC NC V _s (Opt.) GND GND	Out DB14 Out DB15 Out DB16 (LSB)	ScreenPEPower connector: 4-pole plug, screw wire connecti included.Pin 1 (left)+V_sPin 2+V_sPin 3GNDPin 4GNDMax. loopthroughed curr		4-pole connection, ned current:
Screen		PE		+v _s GND	Pin 1 - Pi Pin 3 - Pi	n 2: 3A n 4: 3A

ORDERING INFORMATION

Part No.	Туре	Supply Voltage (+V _s)	Output Voltage Level
3938524	10 bit: G-RDCTLSC01024-0XX-24	+10 to +36 V _{DC}	TTL (5V)
1185043-01	12 bit: G-RDCTLSC04096-0XX-24	+10 to +36 V _{DC}	TTL (5V)
3933425	16 bit: G-RDCTLSC65536-0XX-24	+10 to +36 V _{DC}	TTL (5V)

RESOLVER PRODUCT GROUP

RESOLVER TO CANOPEN CONVERTER / RESOLVER AS ENCODER IN CANOPEN-PROFILE

The LTN G-RCC is a resolver to CANopen converter to enable the integration of a resolver into a CANopen network as single CANopen node. The G-RCC drives the resolver autonomously and delivers position and speed values as encoder in CANopen-profile. The LTN G-RCC uses a monolithic RDC-IC for resolver to digital conversion and a separate microcontroller for all other functions (control, communication, scaling, computation, etc.).

CAN-REFERENCES

1) Robert Bosch GmbH, CAN Specification 2.0A, 1991 | 2) CiA DS 201...207 ver. 1.1, CAN Application Layer for Ind. Appl. | 3) CiA DS 301 ver. 4.02, CAL-based Communication Profile, Feb. 2002 | 4) CiA DS 303 ver. 1.3, Add. Spec., Part: Indicator Spec., Aug. 2006 | 5) CiA DS 305 ver. 2.0, Layer Setting Service (LSS) | 6) CiA DS 306 ver. 1.3, EDS Spec. for CANopen, Jan. 2005 | 7) CiA DS 406 ver. 3.1, Device Profile for Encoders, Dec. 2001

SPECIFICATIONS - CONVERTER OUTPUT

Protocol:	CANopen Protocol	I
Output Data:	position value (in incremental steps), current	
	speed value (in incremental steps per	
	second)	F
Resolution:	can be free software-scaled between 2	
	and 65536 incremental steps per revolution	E
	by CANopen protocol, preset-function	1
	(software-zero) and change of the direction	
	of rotation (CW - CCW) are also supported	
Accuracy:	+/- 0.10° (+/- 6 arcmin)	
	+/- 0.05° (+/- 3 arcmin) on request	

Repeatability:
Rotational Speed:
Baudrate Settings: Node ID Settings:

+/- 1 LSB (incremental step) of the set resolution, e.g. at 16 bits / 65536 incr: +/- 0.33 arcmin. for single speed resolver Up to 0.5 s⁻¹ (mech.) for single speed and 0.166 s⁻¹ (mech.) for triple speed resolver 0, 20, 50, 125, 250, 500, 800 or 1000 kB/s 0 to 127 (dec), internal bus terminating resistor (120 Ohm / 1W) can be switched by a switch placed on the front panel. Baudrate and node-ID can be set by hardware (coding microswitches) or by LSS.

SPECIFICATIONS - RESOLVER INPUT / OUTPUT

Output Ref. Signal: $4 V_{rms}$ / 100 mA max. / 5 kHzTransformation Ratio:K = 0.5 +/- 10%

POWER SUPPLY

The LTN-RCC is protected against the wrong polarity of power supply and transient overvoltage on all terminals.

Housing:	Phoenix Contact "ME 22.5" for top hat rail mounting
Dimensions:	l = 114.5 mm; h = 99 mm, w = 22.5 mm

CONNECTOR TERMINALS

Power: Sub-D, 9-pin male connector in the front panel / TBUS in the back (top hat rail) / screw terminal connector CANopen: Sub-D, 9-pin male connector in the front panel / TBUS in the back (top hat rail) Resolver: Sub-D, 9-pin female connector in the front panel

Power and CAN signals are passed (loopthroughed) from one terminal / connector to the other one.

CONNECTOR TERMINALS

Signals	CAN (front panel) Sub-D, 9 pin male	TBUS connector top hat rail	Screw terminal	Signals	Resolver (front panel) Sub-D, 9 pin female
CAN Gnd	3, 6	1 (TOP)	3, 4 (RIGHT)	Ref+ (R1)	7
CAN Vs	9	2	1, 2 (LEFT)	Ref- (R2)	1
CAN Lo	2	3		Sin+ (S2)	5
CAN Hi	7	4		Sin- (S4)	6
CAN Shield/PE	5, screen	5 (BOTTOM)		Cos+ (S1)	8
NC	1, 4, 8	, , , , , , , , , , , , , , , , , , ,		Cos- (S3)	9
				NC	2, 3, 4
Sub-D connecto	or bolt thread: 4-40#			Shield/PE	screen

Recommended additional components for using the TBUS system / Phoenix Contact part numbers:

Part No.	Туре	Description	Requirement
2713722	ME 22.5 TBUS 1.5/5-ST-3.81 KMGY	TBUS plug component for top hat rail	necessary
1719697	MC 1.5/5-ST-3.81 GY7035AU	axial plug, connector mating male side of TBUS	optional
1719707	IMC 1.5/5-ST-3.81 GY7035AU	axial plug, connector mating female side of TBUS	optional
1719684	MCVR 1.5/5-ST-3.81 GY7035AU	vertical plug, connector mating male side of TBUS	optional
2713780	E/ME TBUS NS35 GY	end clamp, stable contruction for bus connector	optional
2706302	ME B-KA KMGY	terminal cover for male side of TBUS	optional
2706700	ME B-SA/NS35 KMGY	terminal cover for female side of TBUS	optional

ORDERING INFORMATION

Part No. Type 3938776 G-RCCLDSC65536-0XX-24

Distributors for A	ustralia & New Zea	land 回家回 四日前
MOTION TECHNO	LOGIES PTY LIMIT	
24/22-30 No Caringbah I Phone:	orthumberland Road NSW 2229 Australia (02) 9524 4782	·····
 sales@m www.mo	otiontech.com.au otiontech.com.au	
 ¢	14/04/2023	