Resolver #### **RE-15** Hollow shaft Ø: 12 mm max. Outer Ø: 36.8 mm Length: 16 mm #### **RE-21** Hollow shaft Ø: 17 mm max. Outer Ø: 52.4 mm Length: 26 mm #### **Main features** ■ Operating temperature: -55°C ... +155°C Permissible speed: 20,000 rpm max. Accuracy absolute: ±4'/±6'/±10' Accuracy ripple: 1' max. Rotor and stator completely impregnated ■ 1/2/3/4 pole pairs ## **Operating Principle** A resolver is a rotary transformer that provides information on the rotor position angle θ . The stator bobbin winding is energized with an AC voltage $\mathbf{E}_{\text{R1-R2}}$. This AC voltage is transferred to the rotor winding with transformation ratio \mathbf{Tr} . The AC voltage then induces the voltages $\mathbf{E}_{\text{S1-S3}}$ and $\mathbf{E}_{\text{S2-S4}}$ into the two output windings of the stator. The magnitude of the output voltages vary with the sine and the cosine of the rotor position angle θ , because the two secondary windings are shifted by 90°. Input: E_{R1-R2} Output: E_{S1-S3} E_{S2-S4} Input Signal: $\mathsf{E}_{\mathsf{R1-R2}} =$ $$E_{R1-R2} = E_0 \sin(\omega t)$$ E₀ ★E_{R1-R2} 0 90° 180° 270° 360° 450° 540° 630° 720° mech Output Signal: $E_{S1-S3} = Tr \cdot E_{R1-R2} \cos\theta$ Output Signal: $E_{S2-S4} = Tr \cdot E_{R1-R2} \cdot sin\theta$ ### **Accuracy** The accuracy ϵ is defined as the difference between the electrical angle $\theta_{\rm el}$, indicated by the output voltages of the secondary windings, and the mechanical angle or rotor position angle $\theta_{\rm mech}$. accuracy (ϵ) = electrical angle ($\theta_{\rm el}$) - mechanical angle ($\theta_{\rm mech}$) For each LTN resolver the accuracy is indicated in the data sheet by the terms 'accuracy absolute', 'accuracy spread' and 'accuracy ripple'. The 'accuracy absolute' or the 'accuracy spread' is caused by the internal error of the resolver and the mounting error resulting in 1st and 2nd order harmonics of the sinusoidal signal. At low speeds the 'accuracy ripple' effects the speed stability of a drive. This ripple is caused by 3rd and higher order harmonics. To ensure smooth drive performance even at low speeds LTN resolvers have an accuracy ripple of less than 1'. It is achieved by a patented procedure of stepping two lamination assemblies in the rotor. ### **Resolver RE-15: Selection Guide for Electrical Data** Various mechanical versions available | Basic Model | RE-15-1-A14 | | RE-15-1-K01 | | RE-15-1-V07 | | RE-15-3-D04 | | RE-15-4-D04 | | | |---|---|---|---|--|--|---|--|---|--|--|--| | Primary Side | R1 – R2 | | | | | | | | | | | | Pole Pairs | 1 | | | | | | 3 | | 4 | | | | Transformation Ratio | 0.5 ± 0.05 | | | | | | | | | | | | Input Voltage | 7V _{rms} | 7V _{ms} | 5 V _{ms} | 5 V _{rms} | 7V _{rms} | 7V _{ms} | | | Input Current | 58 mA | 36 mA | 48 mA | 27 mA | 58 mA | 36 mA | 40 mA | 25 mA | 16 mA | 10 mA | | | Input Frequency | 5 kHz | 10 kHz | 1 kHz | 4.5 kHz | 5 kHz | 10 kHz | 5 kHz | 10 kHz | 5 kHz | 10 kHz | | | Phase Shift (± 3°) | 8° | -6° | 26° | 0° | 8° | -6° | 13° | -1° | 15° | 1° | | | Null Voltage | 30 mV max. | | | | | | | | | | | | Impedance | | | | | | | | | | | | | Z_{ro} in Ω Z_{rs} in Ω Z_{so} in Ω Z_{ss} in Ω | 75j98
70j85
180j230
170j200 | 110j159
96j150
245j400
216j370 | 55 j 87
62 j 81
248 j 105
256 j 88 | 164j255
145j210
315j340
278j280 | 75 j 98
70 j 85
180 j 230
170 j 200 | 110j159
96j150
245j400
216j370 | 89 j 151
90 j 142
460 j 557
458 j 521 | 135 j 254
128 j 241
525 j 1015
500 j 966 | 208j393
207j375
831j2496
840j2396 | 319j657
306j636
939j4272
899j4145 | | | D.C. Resistance (± 10%) | | | | | | | | | | | | | Rotor
Stator | 40 Ω
102 Ω | | 17.5 Ω
200 Ω | | 40 Ω
102 Ω | | 34 Ω
380 Ω | | 58 Ω
659 Ω | | | | Accuracy | ±10', ±6' on request | | | | ±4' | | ±5' | | ±6 | | | | Accuracy Ripple | 1' max. 3' max. 3' max. | | | | | | | | | | | | Operating Temperature | −55°C +155°C | | | | | | | | | | | | Max. Permissible Speed | 20,000 rpm | | | | | | | | | | | | Shock (11 ms) | ≤ 10,000 m/s ² | | | | | | | | | | | | Vibration (10 to 500 Hz) | \leq 500 m/s ² | | | | | | | | | | | | Weight Rotor/Stator | 25 g / 60 g 25 g | | 25 g / 70 | 25 g / 70 g | | 25 g / 60 g | | 25 g / 60 g | | 25 g / 60 g | | | Rotor Moment of Inertia | 0.02 ×10 ⁻⁴ kgm ² | | | | | | | | | | | | Hi-pot
Housing/Winding | 500 V min. | | | | | | | | | | | | Hi-pot
Winding/Winding | 250 V min. | | | | | | | | | | | | Rotor | Completely impregnated | | | | | | | | | | | | Stator | Completely impregnated | | | | | | | | | | | | Length of stator | 16.1 mm | | 21.3 mm | | 20.0 mm | | 16.1 mm | | 16.1 mm | | | The selection guide and the mounting dimensions contain a sample of resolvers designed and manufactured by LTN. The performance parameters and mechanical dimensions can also be used as a guideline for new mechanical or electrical designs to satisfy your future requirements with an innovative, cost effective solution. Housed bearing-type resolvers are also designed and manufactured by LTN, but not subject to this data sheet. Please contact us for further information. ## **Resolver RE-15: Mounting Dimensions** RE-15-1: Version A/B Inner diameter stator = 22.800 min. Outer diameter rotor = 22.325 max. Positive counting direction: Rotor cw as viewed from bobbin end (X \leftarrow) Dimensions in mm RE-15-1: Version C/D Inner diameter stator = 22.800 min. Outer diameter rotor = 22.325 max. Positive counting direction: Rotor cw as viewed from bobbin end (X \leftarrow) Dimensions in mm ## Resolver RE-21: Selection Guide for Electrical Data Various mechanical versions available | Basic Model | RE-21-1-A01 | | RE-21-1-A04 | | RE-21-1-A05 | | RE-21-1-K05 | | RE-21-3-A01 | | |---|--|--|--|--|---|--|---|--|--|--| | Primary Side | R1 – R2 | | | | | | | | | | | Pole Pairs | 1 | | | | | | | 3 | | | | Transformation Ratio | 1.0 ± 0.1 0.5 ± 0.05 | | | | | | | | | | | Input Voltage | 7 V _{rms} | 5 V _{rms} | 5 V _{rms} | 7 V _{rms} | 7 V _{rms} | | Input Current | 40 mA | 30 mA | 40 mA | 27 mA | 80 mA | 56 mA | 32 mA | 17 mA | 22 mA | 13 mA | | Input Frequency | 5 kHz | 10 kHz | 5 kHz | 10 kHz | 5 kHz | 7 kHz | 1 kHz | 4,5 kHz | 5 kHz | 10 kHz | | Phase Shift (± 3°) | 11° | -7.5° | 11° | -8° | 8° | 0° | 26° | -10° | 4° | -8° | | Null Voltage | 30 mV max. | | | | | | | | | | | Impedance | | | | | | | | | | | | Z_{ro} in Ω Z_{rs} in Ω Z_{so} in Ω Z_{so} in Ω | 133 j 115
122 j 105
800 j 1454
740 j 1230 | 170 j 200
149 j 190
1310 j 2400
1150 j 2270 | 132 j 120
120 j 107
215 j 385
193 j 340 | 165 j 205
145 j 195
345 j 625
293 j 590 | 70 j 74
62 j 65
108 j 206
96 j 183 | 78 j 96
68 j 88
140 j 260
120 j 238 | 112 j 108
114 j 96
357 j 289
360 j 252 | 217 j 322
190 j 304
573 j 933
502 j 880 | 148 j 292
138 j 265
427 j 940
399 j 854 | 230 j 500
202 j 469
609 j 1619
532 j 1520 | | D.C. Resistance (± 10%) | | | | | | | | | | | | Rotor
Stator | 90 Ω
252 Ω | | 90 Ω
62 Ω | | 44 Ω
28 Ω | | 65 Ω
252 Ω | | 60 Ω
245 Ω | | | Accuracy | ±6', ±4' on request | | | | | | | | | | | Accuracy Ripple | 1' max. | | | | | | | | | | | Operating Temperature | −55°C +155°C | | | | | | | | | | | Max. Permissible Speed | 20,000 rpm | | | | | | | | | | | Shock (11 ms) | ≤ 10,000 m/s ² | | | | | | | | | | | Vibration (10 to 500 Hz) | ≤ 500 m/s ² | | | | | | | | | | | Weight Rotor/Stator | 90 g / 200 g | | | | | | | | | | | Rotor Moment of Inertia | 0.14 × 10 ⁻⁴ kgm ² | | | | | | | | | | | Hi-pot
Housing/Winding | 500 V min. | | | | | | | | | | | Hi-pot
Winding/Winding | 250 V min. | | | | | | | | | | | Rotor | Completely impregnated | | | | | | | | | | | Stator | Complete | ly impregna | ted | | | | | | | | | Length of stator | 25.6 mm | | | | | | | | | | The selection guide and the mounting dimensions contain a sample of resolvers designed and manufactured by LTN. The performance parameters and mechanical dimensions can also be used as a guideline for new mechanical or electrical designs to satisfy your future requirements with an innovative, cost effective solution. Housed bearing-type resolvers are also designed and manufactured by LTN, but not subject to this data sheet. Please contact us for further information. ## **Resolver RE-21: Mounting Dimensions** RE-21-1: Version A/B Inner diameter stator = 33.470 min. Outer diameter rotor = 32.735 max. Positive counting direction: Rotor cw as viewed from bobbin end (X \leftarrow) Dimensions in mm #### RE-21-1: Version C/D Inner diameter stator = 33.470 min. Outer diameter rotor = 32.735 max. Positive counting direction: Rotor cw as viewed from bobbin end (X \leftarrow) Dimensions in mm ## **Ordering Information** #### LTN Servotechnik GmbH Georg-Hardt-Straße 4 D-83624 Otterfing Germany Tel: +49-08024-6080-0 Fax: +49-08024-6080-100 E-Mail: LTN@LTN.de Internet: www.LTN.de