

TECHNICAL SPECIFICATIONS

ELECTROMEN STEPPER MOTOR CONTROLLERS

SUMMARY

Continuous Current limit (amps)	Volts	Model #	Page
1	12-40	EM-121	3
3	12-24	EM-318	5
4	12-45	EM-136	7
5	20-80	EM-186-72	9
6	12-24	EM-314	11

Distributors for Australia & New Zealand

MOTION TECHNOLOGIES PTY LTD

24/22-30 Northumberland Road Caringbah NSW 2229 Australia Phone: (02) 9524 4782 Fax: (02) 9525 3878

sales@motiontech.com.au www.motiontech.com.au

© 19/03/19

EM-121 STEPPER MOTOR CONTROLLER 40V 1A

FEATURES

- Bipolar chopperWide operating voltage range
- Full and half step operation
- 7-settable phase currents
- Auxiliary oscillator
- Acceleration ramp, 3-speed
- Self recovery fuse
- Rail mounting base fittable

EM-121 is bipolar-chopper type stepper motor controller. Bipolar operation suits most stepper motors and provides the best torque. Phase current is set to desired level using chopping type current limit.

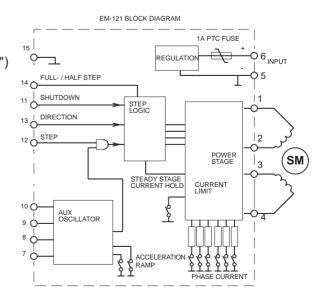
The phase current (current limit) can be set in seven different levels using jumpers. A wide phase current set range makes it possible to use the device with several different motors. EM-M121 also utilizes steady state current hold, in other words when the motor is stopped the controller decreases phase current, this feature reduces both the motor and controller thermal loss. Two steady state current hold modes are settable.

The controller features an auxiliary oscillator, which has fifteen preprogrammed frequencies. The frequency is set with four control inputs. Auxililary oscillator in EM-121 has also an acceleration ramp feature, which can be used to change frequencies flexibly, so that the motor will start up reliably even at high frequencies. There are three acceleration ramp intervals, that can also be bypassed.

The inputs operate with so called negative logic, in other words the inputs are activated with connecting the input to ground, the inputs also work with TTL-logic level control.

The power state of EM-121 has thermal protection for overload, the device has also self recovery fuse that protects the controller from over current and reversed input voltage polarity.

TECHNICAL DATA:


Operating voltage Idle current Current set

Steady state I hold Voltage loss Fuse Aux. osc. freq.

Freq. precision Digital control

Step freq. Operating temp. Dimensions Weight

12-40Vdc approx. 40mA / (20mA shutdown "0") 0.25; 0.37; 0.5; 0.63; 0.75; 0.9; and 1.0A approx. 35 or 67% of current set 3V when Im=1A 1A self recovery. 20, 50, 100, 200, 300 Hz 400, 600, 800, 1000 Hz 1.5; 2; 2.5; 3; 3.5; 4 kHz typ. 1% "off" when Uin 4 -30V or open "on" when Uin 0-1V max. 9kHz 0-50°C 67x75x25mm approx. 100g

OPERATING INSTRUCTIONS EM-121

Supply voltage 12-40Vdc filtered.

Control inputs are activated using switches, or 0-5V voltage signals, or NPN-open collector outputs.

Current, steady state current hold and ramp are set with jumpers

STEP:

- full step switch on or 0V half step switch off or 5V DIRECTION: - Forward switch on or 0V Backwards switch off or 5V STEP-INPUT: - TTL or 0-5V pulse, trigs with falling edge SHUTDOWN: - switch on or 0V CHOOSING AUXILIARY OSCILLATOR FREQUENCIES: - activate with switch on or 0V

CURRENT SET

Phase current setting map

	1A
0 0 0	0.9A
0 0 0	0.75A
0 0 0 0 0 0 0	0.63A
0 0 0 0	0.5A
000000	0.37A
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	0.25A

AUXILIARY OSCILLATOR

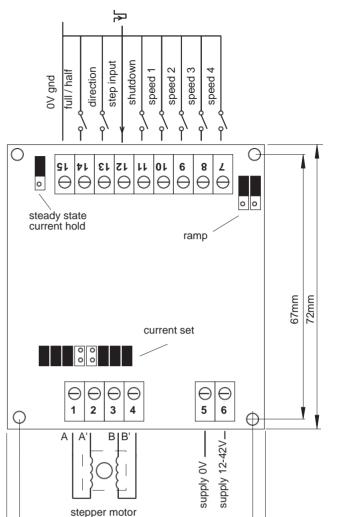
The aux. oscillator produces preprogrammed frequencies, the frequencies are set with four digital inputs. The aux. oscillator also features ramp, that can be used to change frequencies flexible, with better motor start up. Small frequencies change directly, but frequencies above 400 Hz change with slope. CAUTIÓN! Aux. oscillator cannot be

used with pulse input at the same time.

fast (400-4000Hz 0.2s.)

middle (400-4000Hz 0.4s.)

slow (400-4000Hz 0.6s.)


ramp off (direct)

0 0

0

STEADY STATE CURRENT HOLD When the motor is not run the current set changes to current hold. Steady state current hold is set either to 33% or 67%

59mm 65mm

switches 2 3 4 freq./Hz 1 4000 X \times Х \times 3500 \times \times \times 3000 \times \times Х \times \times 2500 \times X \times 2000 \times \times 1500 \times \times 1000 \times 800 600 Х \times \times 400 \times \times \times \times 300 \times 200 \times \times 100 \times 50 \times 20 stop

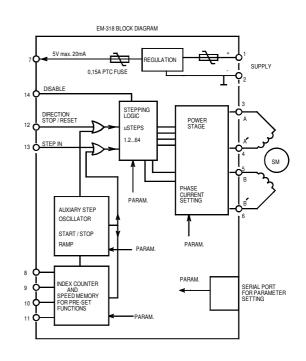
EM-318 STEPPER MOTOR DRIVER 3A 12-24V microstepping and presettable function inputs

FEATURES

- Bibolar chopper
- 1, 1/2 , 1/4.....1/64 steps
- Four preset function inputs
- PNP or TTL control
- Quiet run current control
- Acceleration / deceleration ramps
- DIN-rail base mountable

EM-318 is a bipolar-chopper type microstepping steppermotor controller. The bipolar operation principle suits most stepper motors and provides the best torque. The microstepping function also enables great performance at low rpm. The stepping and current regulation has been synchronized, giving a smooth and quiet operation. There are 7 different stepping options to choose from, ranging from full- to 1/64-step operation. This provides various possibilities for different speed applications.

The controller has its own auxiliary oscillator, which can be used for pre-set speed driving. The pre-set speeds can be activated by using 4 digital function inputs. The oscillator features an acceleration ramp function, which allows frequencies to be altered flexibly. The motor will also start up reliably even to higher frequencies and it is possible to shift to the desired velocity with out pace drop. The auxiliary oscillator incorporates an indexing part, which offers the possibility of running presettable operational sequences. These secuences can be activated with the 4 digital inputs. The sequence is a movement with selected speed, direction and distance (as steps). All the inputs are activated with positive logic commands. So the commands and functions are activated by connecting the input to a positive voltage. Control can also be done with TTL-logic level commands.


All of the controller settings are made digitally, using the separate setting device, EM-236 Interface Unit. With this device the settings are easily copied to an other or even to multiple controllers.

CONTROL INPUT CONFIGURATION

tep in = 22kohm

Operating voltage Idle current Current settings Auxliary oscillator Frequency accuracy Ramp adjust Control level

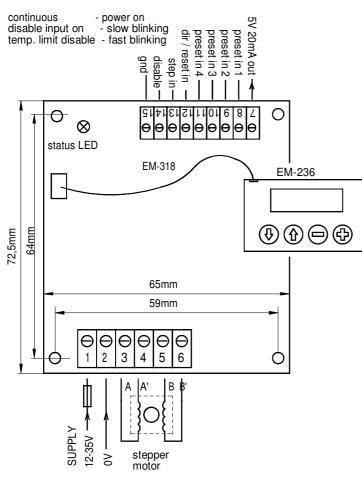
Max. step freq. Operating temp. Dimensions Weight 12-35Vdc n. 20mA 0.1-3A (step 0.1A) 50-10000Hz typ. 0.5% 0.1-5s (0 to 10000Hz) "on" when Uin 4-30V "off" when Uin 0-1V or open 15kHz 0-50°C 87x72.5x25mm 100g

CONNECTIONS

Operating voltage 12-35Vdc, ripple smaller than 20%. The card has no internal fuse. The use of an external fuse is recommended. Incorrect supply polarity can damage the controller. All control inputs work with positive control 4-30V. Inputs can be controlled with PLC or TTL signals. 5V auxiliary output (terminal 7) can source max. 20mA.

CONTROL -inputs

STEP IN is the input for stepping pulses. One steps is done with the positive edge of the input pulse. DIR/STOP/RESET input is normally used to choose the rotational direction. If preset functions are used (terminal 8 to 11) this input can act as a stop input, and if preset sequence is used it will also reset the sequence counter. This input is triggered with up going pulse edge.


DISABLE will shut down power stage and hold it disabled, this input has the highest priority. But it will not reset a sequence. So it is recommended to stop and reset functions before releasing disable to avoid any possible uncontrolled startup. PRESET IN 1-4 are presettable function inputs. These are used to activate chosen preset function. Function parameters include speed, direction, and distance in steps.

If stepping distance is chosen to be zero, the drive will be continued as long as input is selected or STOP is activated. In other words the function works as preset speed driving.

PARAMETER SETTING

The card settings are made with a EM-236 Interface Unit or Ementool Lite PC soft-ware and EM-268 USB-dongle. EM-236 is connected to a red connector on the card. At first it will display the cards type and program version. Answering yes for LOAD and EDIT alternative the cards parameters are retrieved and displayed as a list that can be browsed with the arrow keys. Adjustment is done with +/- keys. The adjusted parameters are saved by pressing the SAVE key for about 2 seconds. After this, a notification will appear that that the new values has been SEND and SAVED. By choosing the MONITOR function, you can monitor the cards operation.

Status LED codes

PARAMETER EFFECT

1. The stepping mode determines how much motor moves when card receives a step pulse. The most precise results are achieved with so called micro-stepping (partial step) setting and the highest possible resolution is 1/64-motor step agains one incoming step pulse.

2.Ramp setting is common for acceleration- and deceleration. Ramp is in use with preset functions. 3. The current drop function limits the current to the set percentace during the rest-stage. This reduces the amount of the heat that motor has to dissipate. Notice. Lower values than 100% can reduce precision in micro-stepping driving.

4. Phase current limiting during the drive. 7.-22. These are to determine preset functions which are activated with PRESET IN # inputs. There are four preset functions available to be determined 7.-10. Parameters to select the preset direction. 11.-14. Parameters to set the stepping frequency = speed 15.-22. Parameters for stepping amount = distance.

For example: Par.15 set to 393 and Par.16 set to 41 will result in 41393 steps total when terminal 8 (preset in 1) is activated. Notice.

The movement is in ratio to the used stepping mode. With 1/64 mode the movement is smallest, that is: 41393/64 = 646 + 49/64 full steps

MONITORABLE VALUES

- 1. last activated preset function
- 2. sequence step down counter to zero
- 3. Step counter. Reset with a new sequence.

PARAMETERS of EM-318 prog 1.2 default values in brackets.

1. Stepping mode (0-6) [2) 0 = full step 1 = half step 2 = quarter step 3 = 1/8 step 4 = 1/16 step 5 = 1/32 step 6 = 1/64 step 2. Ramp time 0.1-5s (1-50) [10] 3. Current 1s after stop (1-4) [4] 1.100% (= normal) 2. 50% (reduced) 3. 25% (reduced) 4.0% (current disabled) 4. Phase current 0.1-3A (1-30) [10] 5. not in use (0-1) 6. not in use (0-1) Preset run directions 7. preset 1. 0=fwd 1=rev 8. preset 2. 0=fwd 1=rev 9. preset 3. 0=fwd 1=rev [0] 10.preset 4. 0=fwd 1=rev [1] Preset run frequencies 11. preset 1. 50-10000Hz (5-1000) 12. preset 2. 50-10000Hz (5-1000) 30 13. preset 3. 50-10000Hz (5-1000) 14. preset 4. 50-10000Hz (5-1000) [100] [100] Index run counting values 0-1000000 step Setting 0= continuous run 15. preset 1. 0-999 (0-999) [0] 16. preset 1. 0-1000 x 10³ (0-1000) [0] 17. preset 2. 0-999 (0-999) [0] 18. preset 2. 0-1000 x 10³ (0-1000) [0] 19. preset 2. 0.000 x 10³ (0.1000) [0] 19. preset 3. 0-999 (0-999) [0] 20. preset 3. 0-1000 x 10³ (0-1000) [0] 21. preset 4. 0-999 (0-999) [0] 22. preset 4. 0-1000 x 10³ (0-1000) [0] 23. min start freq. 50-10000Hz (5-1000) [10]

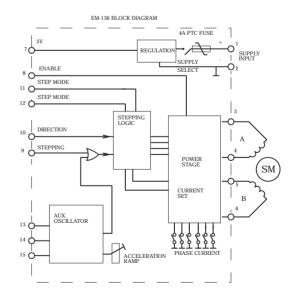
EM-136 STEPPER MOTOR MICROSTEPPING CONTROLLER UNIT 12-45V 0.5-4A

FEATURES:

- Bipolar chopper
- Wide supply voltage range
- Full-, half-, quarter-, and 1/8-step operation
- 8-programmable phase currents
- Auxiliary oscillator
- Acceleration- and braking ramp
- Self recovery fuse
- Very high efficiency
- · Low heat dissipation
- Rail mounting base available

EM-136 is bipolar-chopper type stepper motor controller. Bipolar operation suits most stepper motors and provides the best torque. The microstepping feature gives high performance also at low rpm. The power stage is mosfet-type so it runs with very high efficiency.

There are four stepping modes: full, half, quarter and 1/8. Desired mode is set with two control inputs. The phase current (current limit) can be set in eight different levels using dip-switches. A wide phase current set range makes it possible to use the device with several different motors.


The controller features an auxiliary oscillator, which has 7 preprogrammed frequencies. The frequency is set with three control inputs. Auxiliary oscillator in EM-136 has also an acceleration ramp feature, which can be used to change frequencies flexibly, so that the motor will start up reliably even at high frequencies. The acceleration ramp time is set with a trim.

The inputs operate with so called positive logic, in other words the inputs are activated with connecting the input to positive voltage. The inputs also work with TTL-logic level control.

The power state of EM-136 has self recovery fuse that protects the controller from over current and reversed input voltage polarity.

TECHNICAL DATA:

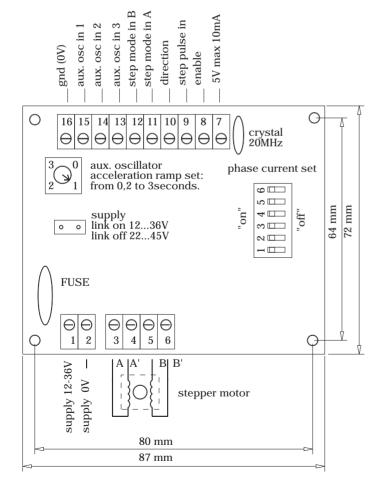
Operating voltage	12-45Vdc
Idle current	approx. 25mA (enable "0")
Current set	0.5; 1,0; 1.5; 2.0;
	2.5; 3.0; 3,5 and 4.0A
Voltage loss	1V when Im=1A
Fuse	4A self recovery.
Aux. osc. freq.	200, 500, 1000, 2000 Hz
•	3000, 5000, 8000 Hz
Ramp speed	0,23s (08000 Hz)
Aux. freq. precision	better than 0,5%
Digital control	"on" when Uin 4 -30V
0	"off" when Uin 0-1V
Step freq.	max. 15 kHz
Operating temp.	0-50°C
Dimensions	87x73x35mm
Weight	approx. 90g
5	

EM-136 WIRING AND INSTALLATION

Supply voltage 12-45Vdc, ripple less than 20% Make sure that the current feed capability of the voltage source is adequate for the application. The undervoltage situation can cause undesired effects for the function.

The phase current is set with PHASE CURRENT switch (see the table below). Notice that the motor do not always need the nominal phase current. Often the motor works better with lower than the nominal current. Find the best current for your application, but do not exceed the nominal current of the motor.

Control inputs are activated using switches or voltage signal. Driver has a positive control logic 5...30V = "on", 0-1V or OPEN = "off"


There are four stepping modes : full, half, 1/4 and 1/8. The full-step is good for higher speeds. The 1/8-step gives best resolution on positioning use, and also the smoothest run on low speeds. Stepping mode is selected with STEP MODE inputs A & B (look at table below).

If used with external stepping frequency source, connect frequency signal to STEP PULSE input. Incoming pulse level should be 4-30V, frequency max.15kHz and minimum pulse lenght 25us. Internal stepping source (aux. oscillator) is set with AUX. OSC. inputs 1,2 and 3 (see the table). Aux. oscillator includes also the acceleration RAMP. It gives a smooth start towards the selected frequency. The ramp time can be adjusted from 0.2 to 3sec. The AUX. OSC. frequencies and the RAMP time are based on 20MHz crystal frecuency. The chrystal can be changed to be anything between 4...20MHz. The AUX. OSC. frequencies and ramp time are changed in the same proportion.

ENABLE has the highest priority.

NOTE. If ENABLE input is "off" the output stage is turned off, (output current is off) and also the AUX. OSC is reset. So every time when the ENABLE input is turned "on" the AUX. OSC. starts with the acceleration ramp.

DIRECTION input is used to change the rotating direction. Direction change does not include the RAMP function in it self. But if it is used with the ENABLE input the ramp and the smooth direction change can be achieved.

STEP MODE SET

full step: input A and B "off" half step: input A "on", B "off" 1/4 step: input A "off", B"on" 1/8 step: input A and B "on"

PHASE CURRENT SET

0.5A all "off" 1.0A 1 and 4 "on", others "off" 1.5A 2 and 5 "on", others "off" 2.0A 1,2,4,5 "on", others "off" 2.5A 3 and 6 "on", others "off" 3.0A 1,3,4,6 "on", others "off" 3.5A 2,3,5,6 "on", others "off" 4.0A all "on"

AUX. OSCILLATOR FREQ. (with 20MHz crystal)

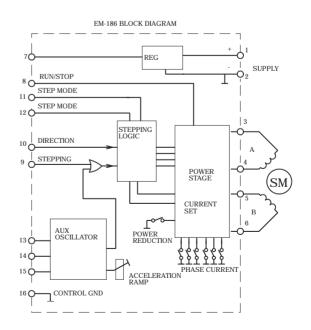
stop all aux. osc. input "off" 200Hz in1 "on", others "off" 500Hz in2 "on", others "off" 1000Hz in1,2 "on", others "off" 2000Hz in3 "on", others "off" 3000Hz in1,3 "on", others "off" 5000Hz in2,3 "on", others "off" 8000Hz all aux. osc. input "on"

EM-186-72 STEPPER MOTOR MICROSTEPPING CONTROLLER UNIT 20-80V 0.8-5A

FEATURES:

- Bipolar chopper
- Wide supply voltage range
- Full-, half-, quarter-, and 1/8-step operation
- 8-programmable phase currents
- Auxiliary oscillator
- Acceleration- and braking ramp
- Power reduction
- Very high efficiency
- Low heat dissipation
- Rail mounting base available

EM-186-72 is bipolar-chopper type stepper motor controller. Bipolar operation suits most stepper motors and provides the best torque. The microstepping feature gives high performance also at low rpm. The power stage is mosfet-type so it runs with very high efficiency.


There are four stepping modes: full, half, quarter and eighth. Desired mode is set with two control inputs. The phase current (current limit) can be set in eight different levels using dip-switches. A wide phase current set range makes it possible to use the device with several different motors. Automatic power reduction will drop phase current when stepping pulses stop coming.

The controller features an auxiliary oscillator, which has 7 preprogrammed frequencies. The frequency is set with three control inputs. Auxiliary oscillator in EM-186-72 has also an acceleration ramp feature, which can be used to change frequencies flexibly, so that the motor will start up reliably even at high frequencies. The acceleration ramp time is set with a trim.

The inputs operate with so called positive logic, in other words the inputs are activated with connecting the input to positive voltage. The inputs also work with TTL-logic level control.

TECHNICAL DATA:

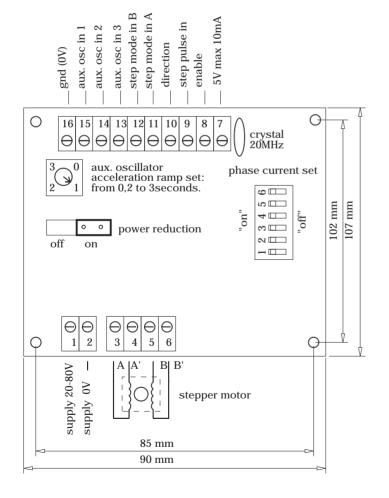
Operating voltage	20-80Vdc
Idle current	approx. 25mA (enable "0")
Current set	0,8; 1,4; 2; 2,6
	3,2; 3,8; 4,4; 5,0A
Voltage loss	1V when Im=1A
Aux. osc. freq.	200, 500, 1000, 2000 Hz
_	3000, 5000, 8000 Hz
Ramp speed	0,23s (08000 Hz)
Aux. freq. precision	better than 0,5%
Digital control	"on" when Uin 4 -30V
	"off" when Uin 0-1V or open
Stepping options	1,1/2,1/4,1/8 step
Power reduction	-70%
Power reduction delay	
Step freq.	max. 15 kHz
Operating temp.	0-50°C
Dimensions	90x107x30mm
Weight	approx. 180g

EM-186-72 WIRING AND INSTALLATION

Supply voltage 20-80Vdc, ripple less than 20% Make sure that the current feed capability of the voltage source is adequate for the application. The undervoltage situation can cause undesired effects for the function.

The phase current is set with PHASE CURRENT switch (see the table below). Notice that the motor do not always need the nominal phase current. Often the motor works better with lower than the nominal current. Find the best current for your application, but do not exceed the nominal current of the motor.

Control inputs are activated using switches or voltage signal. Driver has a positive control logic 5...30V = "on", 0-1V or OPEN = "off"


There are four stepping modes : full, half, 1/4 and 1/8. The full-step is good for higher speeds. The 1/8-step gives best resolution on positioning use, and also the smoothest run on low speeds. Stepping mode is selected with STEP MODE inputs A & B (look at table below).

If used with external stepping frequency source, connect frequency signal to STEP PULSE input. Incoming pulse level should be 4-30V, frequency max.15kHz and minimum pulse lenght 25us. Internal stepping source (aux. oscillator) is set with AUX. OSC. inputs 1,2 and 3 (see the table). Aux. oscillator includes also the acceleration RAMP. It gives a smooth start towards the selected frequency. The ramp time can be adjusted from 0.2 to 3sec. The AUX. OSC. frequencies and the RAMP time are based on 20MHz crystal frecuency. The chrystal can be changed to be anything between 4...20MHz. The AUX. OSC. frequencies and ramp time are changed in the same proportion.

ENABLE has the highest priority.

NOTE. If ENABLE input is "off" the output stage is turned off, (output current is off) and also the AUX. OSC is reset. So every time when the ENABLE input is turned "on" the AUX. OSC. starts with the acceleration ramp.

DIRECTION input is used to change the rotating direction. Direction change does not include the RAMP function in it self. But if it is used with the ENABLE input the ramp and the smooth direction change can be achieved.

STEP MODE SET

full step: input A and B "off" half step: input A "on", B "off" 1/4 step: input A "off", B"on" 1/8 step: input A and B "on"

PHASE CURRENT SET

0.8A all "off" 1.4A 1 and 4 "on", others "off" 2.0A 2 and 5 "on", others "off" 2.6A 1,2,4,5 "on", others "off" 3.2A 3 and 6 "on", others "off" 3.8A 1,3,4,6 "on", others "off" 4.2A 2,3,5,6 "on", others "off" 5.0A all "on"

AUX. OSCILLATOR FREQ. (with 20MHz crystal)

stop all aux. osc. input "off" 200Hz in1 "on", others "off" 500Hz in2 "on", others "off" 1000Hz in1,2 "on", others "off" 2000Hz in3 "on", others "off" 3000Hz in1,3 "on", others "off" 5000Hz in2,3 "on", others "off" 8000Hz all aux. osc. input "on"

EM-314 STEPPER MOTOR DRIVER 6A 12-24V microstepping and presettable function inputs

FEATURES

- Bibolar chopper
- 1, 1/2, 1/4.....1/64 steps
- Four preset function inputs
- PNP or TTL control
- Quiet run current control
- Acceleration / deceleration ramps
- DIN-rail base mountable

EM-314 is a bipolar-chopper type microstepping steppermotor controller. The bipolar operation principle suits most stepper motors and provides the best torque. The microstepping function also enables great performance at low rpm. The stepping and current regulation has been synchronized, giving a smooth and quiet operation. There are 7 different stepping options to choose from, ranging from full- to 1/64-step operation. This provides various possibilities for different speed applications.

The controller has its own auxiliary oscillator, which can be used for pre-set speed driving. The pre-set speeds can be activated by using 4 digital function inputs. The oscillator features an acceleration ramp function, which allows frequencies to be altered flexibly. The motor will also start up reliably even to higher frequencies and it is possible to shift to the desired velocity with out pace drop. The auxiliary oscillator incorporates an indexing part, which offers the possibility of running presettable operational sequences. These secuences can be activated with the 4 digital inputs. The sequence is a movement with selected speed, direction and distance (as steps). All the inputs are activated with positive logic commands. So the commands and functions are activated by connecting the input to a positive voltage. Control can also be done with TTL-logic level commands.

All of the controller settings are made digitally, using the separate setting device, EM-236 Interface Unit. With this device the settings are easily copied to an other or even to multiple controllers.

CONTROL INPUT CONFIGURATION

in = 22kohm

Operating voltage Idle current Current settings Auxliary oscillator Frequency accuracy Ramp adjust Control level

Max. step freq. Operating temp. Dimensions Weight 12-35Vdc n. 20mA 0.1 -6A (step 0.1A) 50-10000Hz typ. 0.5% 0.1-5s (0 to 10000Hz) "on" when Uin 4 -30V "off" when Uin 0-1V or open 15kHz 0-50 ℃ 87x72.5x25mm 100g

EM-314 BLOCK DIAGRAM è REGULATION SUPPLY 0.15A PTC FUSE DISABL STEPPING LOGIC DIRECTION STOP / RESET POWER STAGE 10 uSTEPS 12 64 13 (SM CURRENT PARAM AUXIARY STEP OSCILLATOR START / STOP RAMP PARAM PARAN 8 INDEX COUNTER AND SPEED MEMORY FOR PRE-SET FUNCTIONS SERIAL PORT FOR PARAMETER SETTING 9 10 11

CONNECTIONS

Operating voltage 12-35Vdc, ripple smaller than 20%. The card has no internal fuse. The use of an external fuse is recommended. Incorrect supply polarity can damage the controller. All control inputs work with positive control 4-30V. Inputs can be controlled with PLC or TTL signals. 5V auxiliary output (terminal 7) can source max. 20mA.

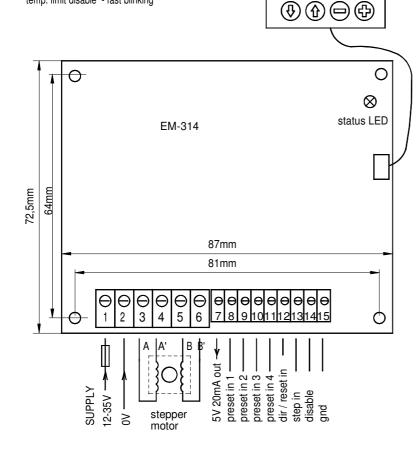
CONTROL -inputs

STEP IN is the input for stepping pulses. One steps is done with the positive edge of the input pulse. DIR/STOP/RESET input is normally used to choose the rotational

direction. If preset functions are used (terminal 8 to 11) this input can act as a stop input, and if preset sequence is used it will also reset the sequence counter. This input is triggered with up going pulse edge.

DISABLE will shut down power stage and hold it disabled, this input has the highest priority. But it will not reset a sequence. So it is recommended to stop and reset functions before releasing disable to avoid any possible uncontrolled startup. PRESET IN 1-4 are presettable function inputs. These are used to activate chosen preset function. Function parameters include speed,

direction, and distance in steps. If stepping distance is chosen to be zero, the drive will be continued


as long as input is selected or STOP is activated. In other words the function works as preset speed driving.

PARAMETER SETTING

The card settings are made with a EM-236 Interface Unit or Ementool Lite PC soft-ware and EM-268 USB-dongle. EM-236 is connected to a red connector on the card. At first it will display the cards type and program version. Answering yes for LOAD and EDIT alternative the cards parameters are retrieved and displayed as a list that can be browsed with the arrow keys. Adjustment is done with +/- keys. The adjusted parameters are saved by pressing the SAVE key for about 2 seconds. After this, a notification will appear that that the new values has been SEND and SAVED. By choosing the MONITOR function, you can monitor the cards operation.

Status LED codes

continuous - power on disable input on - slow blinking temp. limit disable - fast blinking

EM-236

PARAMETER EFFECT

1. The stepping mode determines how much motor moves when card receives a step pulse. The most precise results are achieved with so called micro-stepping (partial step) setting and the highest possible resolution is 1/64-motor step agains one incoming step pulse.

2.Ramp setting is common for acceleration- and deceleration. Ramp is in use with preset functions. 3.The current drop function limits the current to the

3. The current drop function limits the current to the set percentace during the rest-stage. This reduces the amount of the heat that motor has to dissipate. Notice. Lower values than 100% can reduce precision in micro-stepping driving.
4. Phase current limiting during the drive.
5. and 6. are not in use.
7.-22. These are to determine preset functions which are activated with PRESET IN # inputs. There are four preset functions available to be determined.
7.-10. Parameters to select the preset direction.
11.-14. Parameters to set the stepping frequency = space. 11.-14. Parameters to set the stepping frequency = speed 15.-22. Parameters for stepping amount = distance.

For example: Par.15 set to 393 and Par.16 set to 41 will result in 41393 steps total when terminal 8 (preset in 1) is activated. Notice

The movement is in ratio to the used stepping mode. With 1/64 mode the movement is smallest, that is: 41393/64 = 646 + 49/64 full steps

MONITORABLE VALUES

1. last activated preset function

sequence step down counter to zero
 Step counter. Reset with a new sequence.

PARAMETERS of EM-314 prog 1.2 default values in brackets.

1. Stepping mode (0-6) [2]

$ \begin{array}{l} \text{(1)} (1) = 1 \\ \text{(2)} (1) = 1 $
Preset run directions 7. preset 1. 0=fwd 1=rev [0] 8. preset 2. 0=fwd 1=rev [1] 9. preset 3. 0=fwd 1=rev [0] 10.preset 4. 0=fwd 1=rev [1]
Preset run frequencies 11. preset 1. 50-10000Hz (5-1000) [30] 12. preset 2. 50-10000Hz (5-1000) [30] 13. preset 3. 50-10000Hz (5-1000) [100] 14. preset 4. 50-10000Hz (5-1000) [100]
Index run counting values 0-1000000 step Setting 0= continuous run 15. preset 1. $0.999 (0.999) [0]$ 16. preset 1. $0.1000 \times 10^3 (0.1000) [0]$ 17. preset 2. $0.999 (0.999) [0]$ 18. preset 2. $0.1000 \times 10^3 (0.1000) [0]$ 19. preset 3. $0.999 (0.999) [0]$ 20. preset 3. $0.1000 \times 10^3 (0.1000) [0]$ 21. preset 4. $0.999 (0.999) [0]$ 22. preset 4. $0.1000 \times 10^3 (0.1000) [0]$
23. min start freq. 50-10000Hz (5-1000) [10]