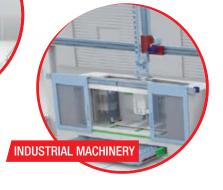
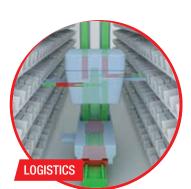


www.motiontech.com.au

TO SUPPORT YOU, WE DESIGN AND PRODUCE

An industrialized process with various levels of customization




ROBOTICS

For over 40 years, Rollon has adopted an approach entailing responsibility and ethics in the design and production of our linear motion solutions for different industrial sectors. The reliability of an international technology group has now been combined with the availability of a local support and service network

VALUES

Rollon's goal is to help our clients become more competitive in their markets through technological solutions, design simplification, productivity, reliability, duration, and low maintenance. PERFORMANCE

COLLABORATION

SOLUTIONS APPLICATIONS

High-level technical consulting and cross-competence allow us to identify the needs of our clients and transform them into guidelines for continuous exchange, whileour strong specialization in the different industrial sectors becomes an factor in developing projects and innovative applications.

> Rollon takes on the task of design and development of linear motion solutions, taking care of everything for our customers, so that they can concentrate on their core business. We offer everything from individual components to specifically designed, mechanically integrated systems: the quality of our applications is an expression of our technology and competence.

MEDICAL

DIVERSIFIED LINEAR SOLUTIONS FOR EVERY APPLICATION REQUIREMENT

Linear and telescopic rails

Linear Line

Linear and curved rails with ball and roller bearings, with hardened raceways, high load capacity, self-alignment, and capable of working in dirty environments.

Telescopic Line

Telescopic rails with ball and roller bearings, with hardened raceways, high load capacities, low bending, resistant to shocks and vibrations. For

partial, total or extended extraction up to 200% of the length of the guide.

Linear actuators and automation systems

Actuator Line

Linear actuators with different rail configurations and transmissions, available with belt, screw, or rack and pinion drives for different needs in terms of precision and speed. Rails with bearings or ball recycle systems for different load capacities and critical environments.

Actuator System Line

Integrated actuators for industrial automation, used in applications in several industrial sectors: automated industrial machinery, precision assembly lines, packaging lines and high speed production lines. The Actuator Line evolves to satisfy the requests of our most discerning clients.

Precision System

1 TH series

TH	series description	PS-2
	e components	PS-3
	70 SP2	PS-4
	70 SP4	PS-5
	90 SP2	PS-6
	90 SP4	PS-7
	110 SP2	PS-8
	110 SP4	PS-9
	145 SP2	PS-10
	145 SP4	PS-10 PS-11
		PS-11
	tor connections	
	rication	PS-13
	ical speed	PS-14
	essories	PS-15
Orc	lering key	PS-21
2 TT s	eries	
TT	series description	PS-22
	components	PS-23
TT	100	PS-24
TT	155	PS-26
	225	PS-28
	310	PS-30
	prication	PS-32
	curacy certificate	PS-33
	ical speed	PS-35
	cessories	PS-36
	lering key	PS-40
		F 3- 40
3 TV s	eries	
TV	series description	PS-41
	components	PS-42
TV		PS-43
TV		PS-44
	110	PS-45
	prication	PS-46
	ical speed	PS-47
	cessories	PS-48
	lering key	PS-50
		F3-30
4 TVS	series	
TVS	S series description	PS-51
The	components	PS-52
	e linear motion system	PS-53
	§ 170	PS-54
	\$ 220	PS-55
	prication	PS-56
	ical speed	PS-57
	essories, Alignment nuts	PS-58
	file anchor brackets	PS-59
		PS-59 PS-60
Urt	lering key	rə-00
Mu	Itiaxis systems	PS-61

TH series description

TH linear actuators are rigid and compact, ball screw driven linear units, that enable high positioning accuracy and repeatability in all process phases. With optimal performance assured, TH actuators have a repeatability within 5 μ m.

Thrust force transmission is achieved by means of super high efficient ball screws, which are available in several precision classes and a variety of leads. Linear motion is based on two or four preloaded re-circulating ball bearing blocks, with ball retainer technology, mounted on two precision aligned parallel rails. The TH series is available in single carriage or double carriage versions to meet different load requirements.

The TH linear units also feature safe rail and screw lubrication through a dedicated channel for each component. The incredibly compact structure of the TH actuator makes it the ideal solution for applications where space is limited.

- Extremely compact dimensions
- High positioning accuracy
- High load capacity and stiffness
- Preloaded ball screw
- Block with ball retainer
- Internal protected rails and ball screw
- Safe lubrication through dedicated channels for each component (block and ball screw)

The components

Aluminum base unit and carriage

The anodized extrusions used for the profile and carriages of the Rollon TH-series linear units were designed and manufactured in cooperation with industry experts to achieve high-level accuracy and to maximize mechanical properties. The anodized aluminum alloy 6060 used and was extruded with dimensional tolerances complying with UNI 3879 standards.

Linear motion system

Precision ball bearing guides with ground rails and preloaded blocks are used on Rollon TH series linear units. Use of this technology makes it possible to obtain the following features:

- High accuracy running parallelism
- High positioning accuracy
- High level of rigidity
- Reduced wear
- Low resistance to movement

Drive system

Rollon TH-series linear units use precision ball screws with either preloaded or non-preloaded ball screw nuts. The standard precision class of the ball screws used is ISO 7, however ISO 5 precision class is also available upon request. The ballscrew on the TH unit is available in different diameters and leads (see specifications tables). Use of this type of technology makes it possible to obtain the following features:

- High speed (for long pitch screws)
- High load capacity and accurate thrust forces
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

Protection

Rollon TH series linear units are equipped with sealing strips in order to protect the mechanical components inside the linear unit against contaminants. In addition, the ball bearing guides and ball screws have their own protection system, including scrapers and lip seals to remove contaminates from the raceways of the ball bearings.

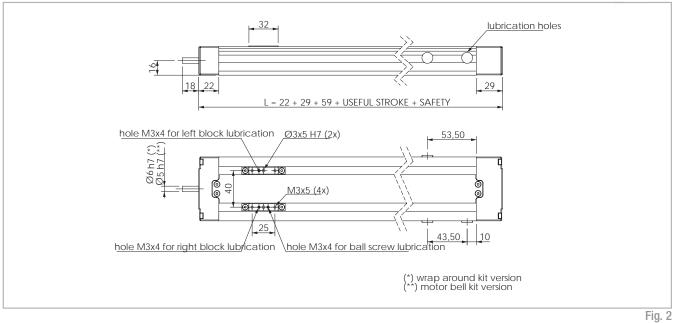
General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm ²	К	m.K	kg . K		
2.7	69	23	200	880-900	33	600-655


Tab. 2

Mechanical characteristics

Rm	Rp (02)	A	НВ
<u>N</u> mm²	N mm ²	%	—
205	165	10	60-80

TH 70 SP2

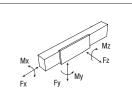
TH 70 SP2 Dimensions (single carriage)

Technical data

	Туре
	TH 70 SP2
Useful stroke length [mm]	290 *1
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.152
Zero travel weight [kg]	0.58
Weight for 100 mm useful stroke [kg]	0.26
Rail size [mm]	9 mini
*1 Max stroke 591mm. For more information please contact Rollon.	Tab. 4

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 70 SP2	0.0054	0.0367	0.042
			Tab. 6

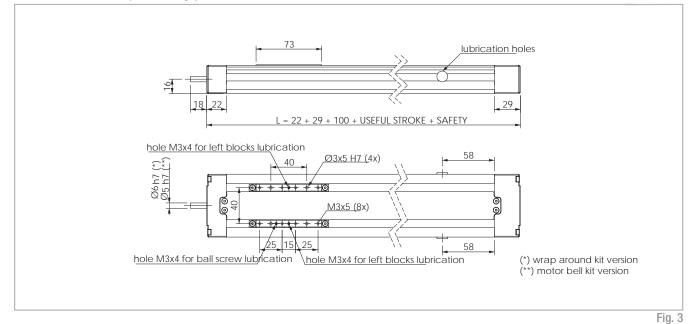

Ball screw precision

Туре	Max. positioning precision [mm/300mm]		Max. rep precisio	
	ISO 5* ISO 7		ISO 5*	ISO 7
TH 70 / 8-2.5	0.023	0.05	0.01	0.02

* ISO5 available only for max stroke 370mm. For more information please contact Rollon. Tab. 5

Load capacity F_x

Туре	F _x [N]				
	Screw	Stat.	Dyn.		
TH 70 SP2	8-2.5	2220	1470		
			Tab. 7		


Load capacity

Туре	pe F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 70 SP2	4990	3140	4990	99.8	12.8	12.8

See verification under static load and lifetime on page SL-2 and SL-3

TH 70 SP4

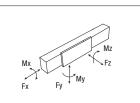
TH 70 SP4 Dimensions (dual carriage)

Technical data

	Туре
	TH 70 SP4
Useful stroke length [mm]	249 *1
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.268
Zero travel weight [kg]	0.8
Weight for 100 mm useful stroke [kg]	0.26
Rail size [mm]	9 mini
*1 Max stroke 550mm. For more information please contact Rollon.	Tab. 9

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 70 SP4	0.0054	0.0367	0.042
			Tab. 11


Ball screw precision

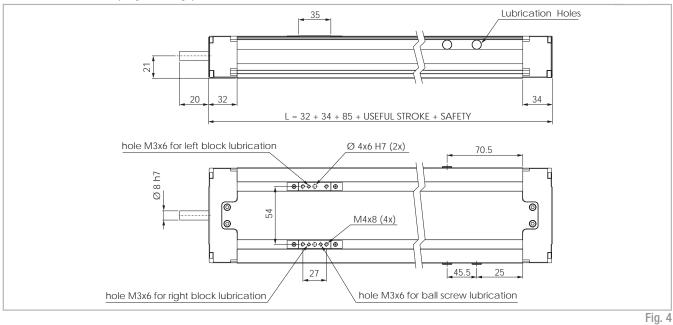
Туре	Max. positioning precision [mm/300mm]			eatability on [mm]
	ISO 5* ISO 7		ISO 5*	ISO 7
TH 70 / 8-2.5	0.023	0.05	0.01	0.02
* ICOE quailable only for may	atualua 000mma Ea		ltt F	alles Tels 40

 * ISO5 available only for max stroke 330mm. For more information please contact Rollon. Tab. 10

Load capacity F_x

Туре	F, [N]			
	Screw	Stat.	Dyn	
TH 70 SP4	8-2.5	2220	1470	
			Tab. 12	

Load capacity


Туре	F [N	: y V]	F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TH 70 SP4	9980	6280	9980	200	319	319

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

Note: for SP4 model the load capacities are valid only when the sliders are fixed together

TH 90 SP2

TH 90 SP2 Dimensions (single carriage)

Technical data

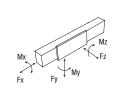
	Туре
	TH 90 SP2
Max. useful stroke length [mm]	665
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.65
Zero travel weight [kg]	1.41
Weight for 100 mm useful stroke [kg]	0.6
Rail size [mm]	12 mini
	Tab. 14

Ball screw precision

Туре	Max. pos precision [n	sitioning 1m/300mm]		eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TH 90 / 12-05	0.023	0.05	0.01	0.02
TH 90 / 12-10	0.023	0.05	0.01	0.02
				Tab. 15

Moments of inertia of the aluminum body

Туре	l [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 90 SP2	0.0130	0.0968	0.1098
			Tab. 16


Starting torque

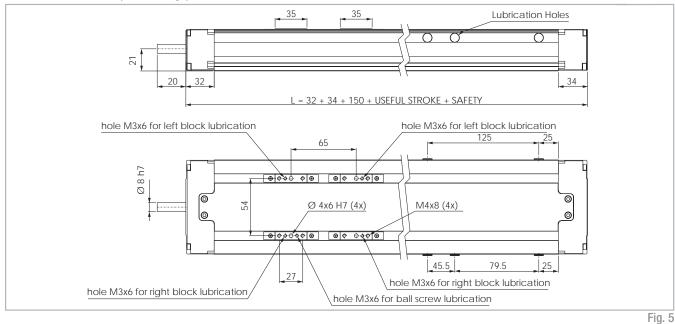
Туре	Ball Screw	[Nm]
TH 90 SP2	12-05	0.07
	12-10	0.08
		Tab. 17

Load capacity F_x

Туре	F _x [N]				
	Screw	Stat.	Dyn.		
TH 90 SP2	12-05	9000	4300		
	12-10	6600	3600		

Tab. 18

Load capacity


Туре	F [1	: V J	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 90 SP2	7060	6350	7060	192	24	24
	1 1 10 10	01 0 10				

See verification under static load and lifetime on page SL-2 and SL-3

P S

TH 90 SP4

TH 90 SP4 Dimensions (dual carriage)

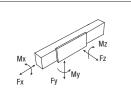
Technical data

	Туре
	TH 90 SP4
Max. useful stroke length [mm]	600
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.90
Zero travel weight [kg]	2.04
Weight for 100 mm useful stroke [kg]	0.6
Rail size [mm]	12 mini
	Tab. 20

Moments of inertia of the aluminum body

Туре	l, [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 90 SP4	0.0130	0.0968	0.1098
Starting torque			Tab. 22

Туре	Ball Screw	[Nm]
TH 90 SP4	12-05	0.07
	12-10	0.08
		Tab. 23

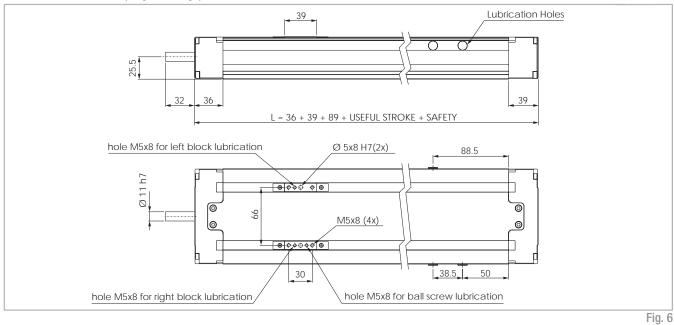

Ball screw precision

Туре	Max. positioning precision [mm/300mm]			eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TH 90 / 12-05	0.023	0.05	0.01	0.02
TH 90 / 12-10	0.023	0.05	0.01	0.02
				Tab. 21

Load capacity F_x

Туре	F _x [N]			
	Screw	Stat.	Dyn	
TH 90 SP4	12-05	9000	4300	
	12-10	6600	3600	

Load capacity


Туре	F []	= Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TH 90 SP4	14120	12699	14120	384	459	459
0	1 I PK . P	01 0 10				T 1 07

See verification under static load and lifetime on page SL-2 and SL-3

Note: for SP4 model the load capacities are valid only when the sliders are fixed together

TH 110 SP2

TH 110 SP2 Dimensions (single carriage)

Technical data

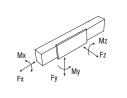
	Туре
	TH 110 SP2
Max. useful stroke length [mm]	1411
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.76
Zero travel weight [kg]	2.65
Weight for 100 mm useful stroke [kg]	0.83
Rail size [mm]	15
	Tab. 26

Ball screw precision

Туре		sitioning nm/300mm]		eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TH 110 / 16-05	0.023	0.05	0.005	0.045
TH 110 / 16-10	0.023	0.05	0.005	0.045
TH 110 / 16-16	0.023	0.05	0.005	0.045
				Tab. 27

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 110 SP2	0.0287	0.2040	0.2327
			Tab. 28

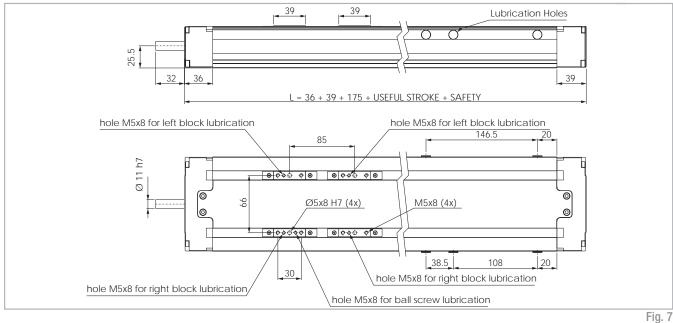

Starting torque

Туре	Ball Screw	[Nm]
TH 110 SP2	16-05	0.16
	16-10	0.23
	16-16	0.27
		Tab. 29

Load capacity F_x

Туре	F _x [N]		
	Screw	Stat.	Dyn.
TH 110 SP2	16-05	17400	11800
	16-10	18300	10500
	16-16	18800	10300

Tab. 30


Load capacity

Туре	F []	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 110 SP2	48400	22541	48400	1549	350	350
See verification under static load and lifetime on page SL-2 and SL-3					Tab. 31	

P S

TH 110 SP4

TH 110 SP4 Dimensions (Dual carriage)

Technical data

Ball screw precision

TH 110 / 16-05

TH 110 / 16-10

TH 110 / 16-16

Туре

	Туре	
	TH 110 SP4	
Max. useful stroke length [mm]	1325	
Max. speed [m/s]	See page PS-14	
Carriage weight [kg]	1.26	
Zero travel weight [kg]	4.00	
Weight for 100 mm useful stroke [kg]	0.83	
Rail size [mm]	15	
	Tab. 32	

Max. positioning

precision [mm/300mm]

ISO 7

0.05

0.05

0.05

ISO 5

0.023

0.023

0.023

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 110 SP4	0.0287	0.2040	0.2327
			Tab. 34

Starting torque

Туре	Ball Screw	[Nm]
TH 110 SP4	16-05	0.16
	16-10	0.23
	16-16	0.27
		Tab. 35

Load capacity F,

Max. repeatability

precision [mm]

ISO 7

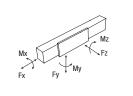
0.045

0.045

0.045

Tab. 33

ISO 5

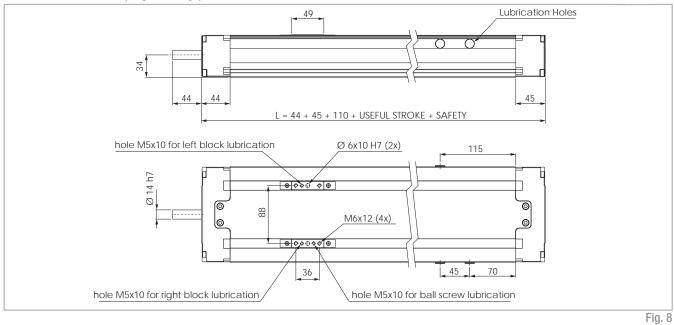

0.005

0.005

0.005

Туре	F _x [N]				
	Screw Stat. Dyn				
TH 110 SP4	16-05	17400	11800		
	16-10	18300	10500		
	16-16	18800	10300		

Tab. 36


Load capacity

Туре	F [f	: y V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.	
TH 110 SP4	96800	45082	96800	3098	2606	2606	
See verification under static loa	See verification under static load and lifetime on page SL-2 and SL-3						

Note: for SP4 model the load capacities are valid only when the sliders are fixed together

TH 145 SP2 >

TH 145 SP2 Dimensions (single carriage)

Technical data

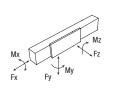
	Туре
	TH 145 SP2
Max. useful stroke length [mm]	1690
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	1.45
Zero travel weight [kg]	5.9
Weight for 100 mm useful stroke [kg]	1.6
Rail size [mm]	20
	Tab. 38

Ball screw precision

Туре	Max. po: precision [n	sitioning nm/300mm]	Max. rep precisio	
	ISO 5	ISO 7	ISO 5	ISO 7
TH 145 / 20-05	0.023	0.05	0.005	0.045
TH 145 / 20-20	0.023	0.05	0.005	0.045
TH 145 / 25-10	0.023	0.05	0.005	0.045
				Tab. 39

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 145 SP2	0.090	0.659	0.749
			Tab. 40

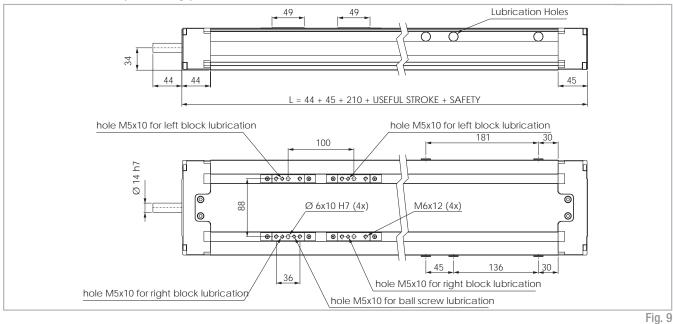

Starting torque

Туре	Ball Screw	[Nm]
	20-05	0.22
TH 145 SP2	20-20	0.35
	25-10	0.29
		Tab. 41

Load capacity F_x

Туре	F _x [N]				
	Screw	Stat.	Dyn.		
	20-05	25900	14600		
TH 145 SP2	20-20	23900	13400		
	25-10	32600	16000		

Tab. 42


Load capacity

Туре	F [1	: y V]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.	
TH 145 SP2	76800	35399	76800	3341	668	668	
See verification under static load and lifetime on page SL-2 and SL-3							

P S

TH 145 SP4

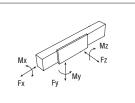
TH 145 SP4 Dimensions (dual carriage)

Technical data

	Туре
	TH 145 SP4
Max. useful stroke length [mm]	1590
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	2.42
Zero travel weight [kg]	8.3
Weight for 100 mm useful stroke [kg]	1.6
Rail size [mm]	20
	Tab. 44

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 145 SP4	0.090	0.659	0.749
Starting torque			Tab. 46


Туре	Ball Screw	[Nm]
	20-05	0.22
TH 145 SP4	20-20	0.35
	25-10	0.29
		Tab. 47

Ball screw precision

Туре	Max. pos precision [n	sitioning nm/300mm]		eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TH 145 / 20-05	0.023	0.05	0.005	0.045
TH 145 / 20-20	0.023	0.05	0.005	0.045
TH 145 / 25-10	0.023	0.05	0.005	0.045
				Tab. 45

Load capacity F_x

Туре	F _x [N]			
	Screw	Stat.	Dyn.	
	20-05	25900	14600	
TH 145 SP4	20-20	23900	13400	
	25-10	32600	16000	
			Tab. 48	

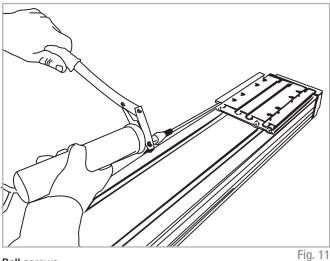
Load capacity

Туре	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 145 SP4	153600	70798	153600	6682	5053	5053
See verification under static loa	ad and lifetime on	page SL-2 and S	SL-3			Tab. 49

Note: for SP4 model the load capacities are valid only when the sliders are fixed together

Motor connections

Units [mi	m]																				
Туре	А	В	С	D	Е	F	G	Н	I	L	М		0	Р	Q	R	S	Т	U	V	Z
TH 70	28	2.5	18	M4x8	-	5 or 6	33	7.5	32	31.3	70	-	-	-	-	-	-	-	-	-	-
TH 90	28	2.5	20	M4x8	-	8	41	8	40	39	90	4	4.5	-	4.8	-	-	5.5	3.8	2.7	1.3
TH 110	40	2.5	32	M4x8	M6x10	11	40	10	50	49	110	4	-	-	4.8	2.5	-	5.5	3.8	2.7	1.3
TH 145	48	2.5	44	M6x10	M6x12	14	40	12	65	64	145	4	9.5	8	5.7	2.5	5.2	5.5	3.8	2.7	1.3
																				Т	ab. 50


PS-12

Lubrication

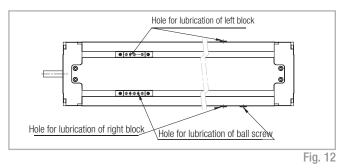
TH linear units with ball bearing guides

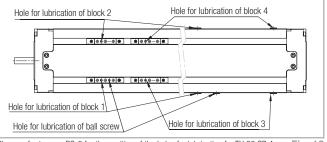
TH Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every 2000 Km or 1 year of use, based on the value reached first. If a longer

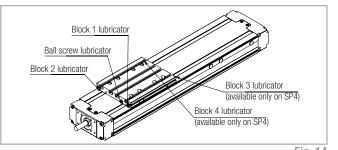
Ball screws

The ball screw nuts for the Rollon TH series linear slides should be re-lubricated every 100 km.


Туре	Quantity [cm³] for grease nipple
08-2.5	0.1
12-05	0.2
12-10	0.2
16-05	0.41
16-10	0.78
16-16	0.6
20-05	0.79
20-20	1.0
25-10	1.2
	Tab. 51


service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Amount of lubricant needed to lubricate carriages:


Туре	Quantity [cm ³]
TH 70	0.23
TH 90	0.5
TH 110	0.7
TH 145	1.4

- Insert grease gun into the specific grease nipples.
- Type of lubrificant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Please refer to page PS-5 for the position of the holes for lubrication for TH 90 SP 4. Fig. 13

Tab. 52

Critical speed

The maximum linear speed of Rollon TH series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.

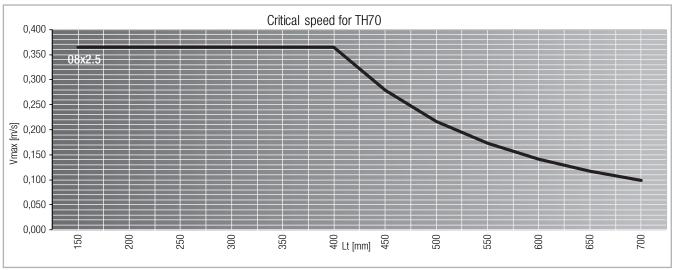
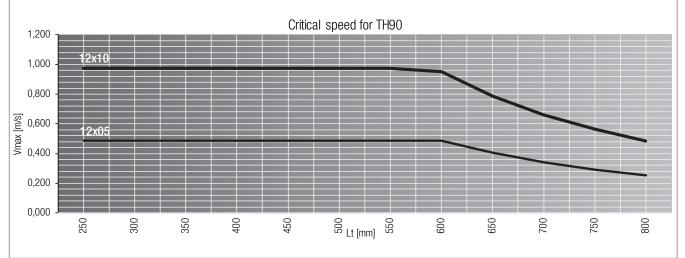
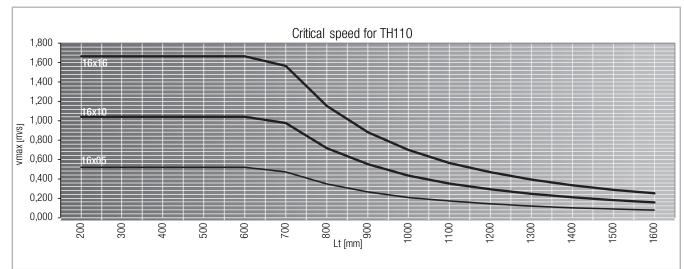
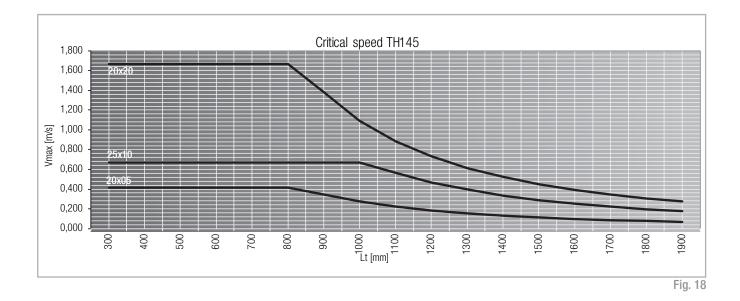
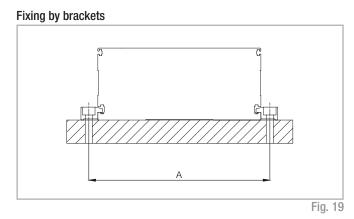
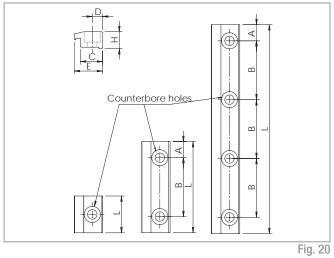



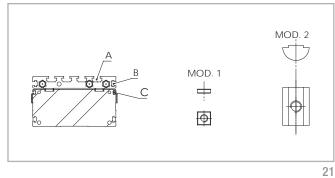
Fig. 15


Fig. 17

Accessories

Fixing brackets


Units (mm)

Туре	A Unit mm
TH 70	82
TH 90	102
TH 110	126
TH 145	161
	Tab. 53

Dimensions (mm)

Туре	N° holes	Counterbore for screw	А	В	С	D	E	H	L	Code Rollon
TH 70	1	M4	-	-	12.5	6.5	15	9	22	1005198
	2	M4	11	40	10.5	4.5	14.5	9.1	62	1003385
TH 90	4	M4	8.5	30	10.5	4.5	14.5	9.1	107	1003509
11 90	4	M4	8.5	20	10.5	4.5	14.5	9.1	77	1003510
	1	M4	-	-	10.5	4.5	14.5	9.1	25	1003612
	4	M5	8.5	30	15	7	19.3	11.5	107	1002805
T IL 440	4	M6	11	40	15	7	19.3	11.5	142	1002864
TH 110 TH 145	1	M6	-	-	15	7	19	11.5	25	1002970
11143	2	M6	11	40	15	7	19	11.5	62	1002971
	4	M5	20	20	15	7	19	11.5	100	1003311
										Tab. 54

T nuts

Units (mm)

Туре	А	В	С
TH 70	Mod. 1 M4 - 963.0407.81	Mod. 1 M4 - 963.0407.81	-
TH 90	Mod. 2 M5 - 6000436	-	Mod. 1 M2.5 - 6001361
TH 110	Mod. 2 M5 - 6000436	Mod. 1 M4 - 963.0407.81	Mod. 1 M2.5 - 6001361
TH 145	Mod. 2 M6 - 6000437	Mod. 1 M4 - 963.0407.81	Mod. 1 M2.5 - 6001361
			Tab. 55

Proximity

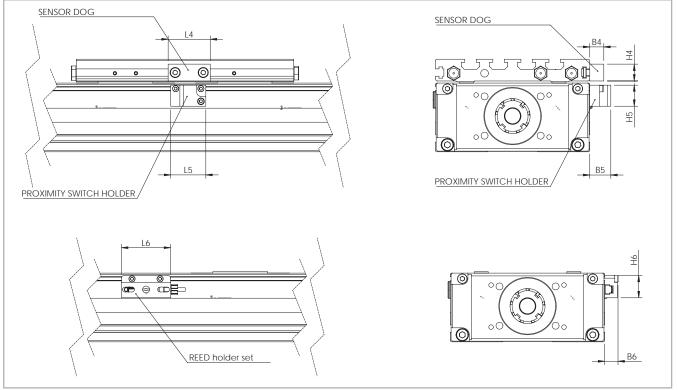
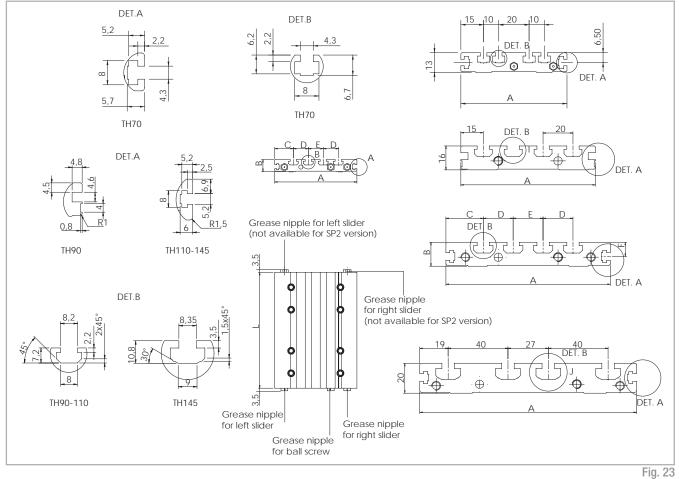



Fig. 22

P S

Units (mm)													
	B4	B5	B6	L4	L5	L6	H4	H5	H6	Sensor	Proximity holder set	Sensor dog	REED holder set
TH 70	8	10	8	30	25	35	10	18	18	Ø 6.5	G001975	G001976	G001974
TH 90	10	15	9.5	12	25	35	6	15	16	Ø 8	G001193	G001203	G001204
TH 110	10	15	9.5	30	25	35	12	15	16	Ø 8	G001193	G001198	G001204
TH 145	10	15	9.5	30	25	35	12	15	16	Ø 8	G001193	G001198	G001204
													Tab. 56

External carriage

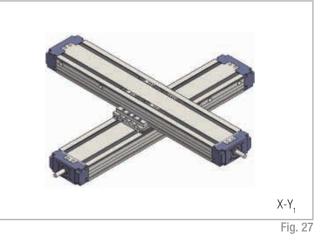
External carriage for SP2	Туре	A	В	С	D	E	F	L	Code
	TH 70	70	13	15	10	20	6,5	60	G001957
6/10	TH 90	90	16	15	20	20	6.8	60	G001195
7/	TH 110	110	16	25	20	20	9.5	60	G001059
14	TH 145	145	20	19	40	27	9.5	80	G001062
									Tab. 57

External carriage for SP4 С Туре В D F L Code TH 70 70 13 15 10 20 6,5 95 G001958 TH 90 90 16 15 20 20 6.8 125 G001194 TH 110 110 16 25 20 20 9.5 155 G001060 G001061 TH 145 145 20 19 40 27 9.5 190 Tab. 58

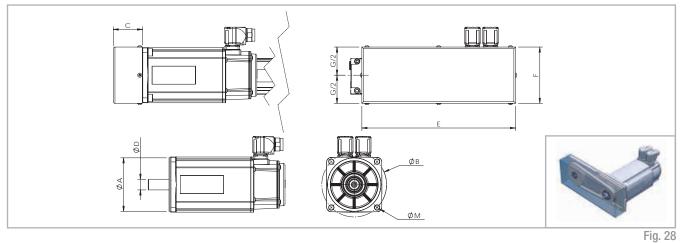
Coupling
Motor bell Kit

Image: Coupling in the second se

Assembly kits



For the direct assembly of TH linear units on multiple axis system Rollon offers dedicated assembly kits. The table below shows the allowed combinations as well as the assembly kit codes.


	Kit	Code
	TH 90 - TH 90 XY ₂	G001199
	TH 90 - TH 110 XY ₂	G001199
4	TH 90 - TH 110 XZ	G001205
	TH 110 - TH 110 XY ₂	G001080
4	TH 110 - TH 110 XZ	G001083
	TH 110 - TH 145 XY ₂	G001079
4	TH 110 - TH 145 XZ	G001084
	TH 145 - TH 145 XY ₂	G001081
4	TH 145 - TH 145 XZ	G001085
	TH 90 - TH 90 XY1	G001483
	TH 90 - TH 90 XY3	G001483 + G001194
	TH 110 - TH 110 XY1	G001173
	TH 110 - TH 110 XY ₂	G001173 + G001060
	TH 145 - TH 145 XY1	G001362
1000	TH 145 - TH 145 XY2	G001362 + G001061

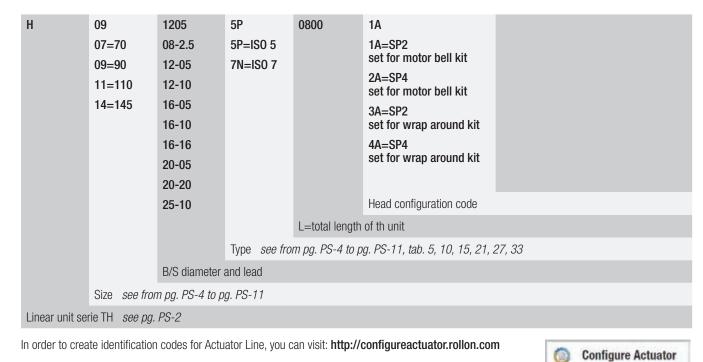
P S

Wrap around kit

Unit	Ratio	А	В	С	D	E	F	М	Code
TH 90	1:1	Ø 40	Ø 63	30	Ø 9	168	63	M4	G001592
TH 110	1:1	Ø 40	Ø 63	40.5	Ø 9	233	88	M4	G001011
TH 110	1:1	Ø 50	Ø 70	40.5	Ø 14	233	88	M4	G001055
TH 110	1:1	Ø 60	Ø 75	40.5	Ø 14	233	88	M6	G001013
TH 145	1:1	Ø 80	Ø 100	52	Ø 14	273	100	M6	G000984
TH 145	1:1	Ø 95	Ø 115	52	Ø 19	273	100	M8	G000988
For further information	on please cont	tact Bollon Tecl	nnical Dept						Tab. 61

For further information please contact Rollon Technical Dept.

Mounting of the motor


Rollon TH Series linear units can be supplied with different types of motor mounts, adapter flanges, and with torsionally stiff couplings for screw and motor connections that enable fast, hassle-free assembly of the motors.

The types of bells available for the related units are shown in the table motor mounts:

Ø D2 4 x D4	Unit	D1	D2	D3	D4	L	L3	Code
	TH70	Ø 30	Ø 45	38	M3	52	4	G002000
a ai	TH70	Ø 40	Ø 63	54	M4	49	3.5	G002001
	TH70	Ø 50	Ø 70	60	M4	59	4	G002002
	TH90	Ø 40	Ø 63	56	M5	50	3	G001192
	TH110	Ø 60	Ø 75	65	M6	68	4	G001051
ØD1H7	TH110	Ø 73,1	Ø 98,4	86	M5	76.7	2	G001074
□ D3	TH110	Ø 60	Ø 75	65	M5	68	4	G001119
	TH110	Ø 50	Ø 70	65	Ø 5.4	75	11	G001200
	TH145	Ø 50	Ø 70	80x60	M4	92	21	G000979
	TH145	Ø 70	Ø 85	80x85	M6	92	4	G001066
	TH145	Ø 70	Ø 90	80x85	M5	92	5	G001067
	TH145	Ø 80	Ø 100	90	M6	92	4	G001068
	TH145	Ø 50	Ø 65	80x85	M5	92	21	G001069
	TH145	Ø 60	Ø 75	80x85	M6	92	4	G001070
L3	TH145	Ø 50	Ø 70	80x85	M5	92	21	G001071
Fig. 29	TH145	Ø 73	Ø 98,4	85	M5	92	4	G001072
	TH145	Ø 55	68X40	85x60	Ø6,4	82	11	G001073
PC 00								Tab. 62

Ordering key // 🗸

Identification code for the TH linear units

Left / right orientation

TT series description

ΤT

The TT is a linear actuator series mainly used for high accuracy positioning within a 10 μ m range and precision repeatability within 5 μ m. Manufactured using a very rigid extruded anodized aluminum base structure, this actuator series is designed for high loads and precise movements that are typically required in machine tools and other exacting machine design applications.

All mounting surfaces and reference datums have been produced to significantly reduce the deviations of pitch, yaw and roll along the entire stroke. The heavy duty carriage is driven by a C5 or C7 preloaded ball screw drive and the payload is supported by a system of four runner blocks mounted on two parallel linear guides. High speeds can be accomplished by specifying available super lead ball screw drivers.

The TT series contains all the necessary features and hardware to make multi-axis configurations and assembly easy. All TT units are 100% inspected and supplied with certificates of accuracy.

PS-22

The components

Aluminum base unit and carriage

The base and carriages of the Rollon TT series linear units were designed and manufactured in co-operation with industry experts to obtain the high-level of accuracy and maximize mechanical properties. Anodized aluminum alloy 6060 was used with dimensional tolerances complying with UNI 3879 standards. To guarantee highly precise movement, the bodies are precision machined on all outer surfaces and in the areas where the mechanical components are fitted, such as ball bearing guides and ball screw supports.

Linear motion system

Precision ball bearing guides with ground rails and preloaded blocks are used on Rollon TT series linear units. Use of this technology makes it possible to obtain the following features:

- High accuracy running parallelism
- High positioning accuracy
- High level of rigidity
- Reduced wear
- Low resistance to movement

General data about aluminum used: AL 6060

Chemical composition [%]

Drive system

Rollon TT-series linear units use precision ball screws with either preloaded or non-preloaded ball screw nuts. The standard precision class of the ball screws used is ISO 5, however ISO 7 precision class is also available upon request. The ballscrew on the TH unit is available in different diameters and leads (see specifications tables). Use of this type of technology makes it possible to obtain the following features:

- High speed (for long pitch screws)
- High load capacity and accurate thrust forces
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

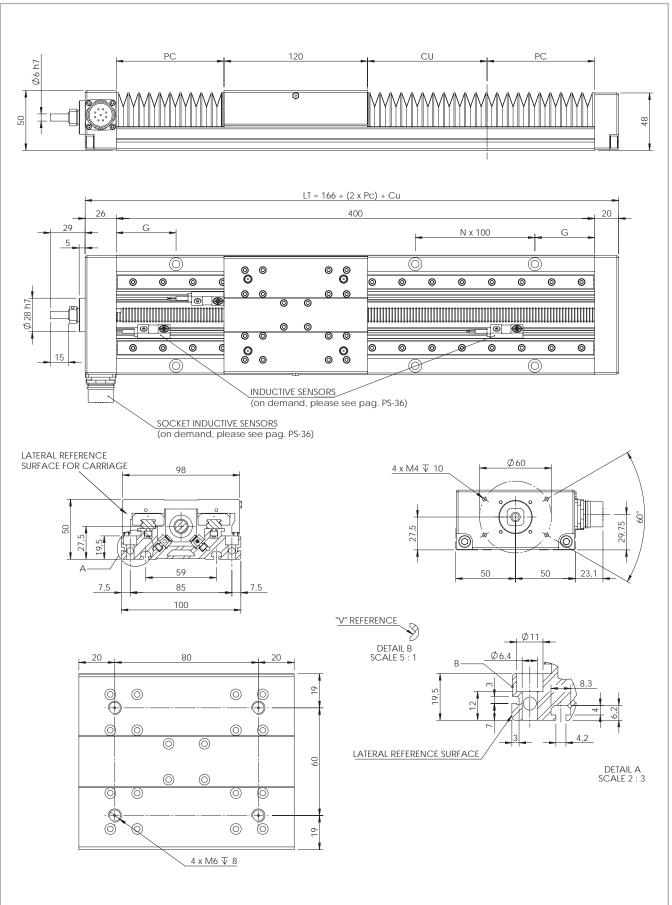
Protection

Rollon TT-series linear units are equipped with bellows in order to protect the mechanical and electrical components inside the linear unit against contaminants. In addition to the bellows system, the ball bearing guides and ball screws have their own protection including scrapers and lip seals to remove contaminates from the raceways of the ball bearings.

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 63

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm ²	К	m . K	kg . K		
2.7	69	23	200	880-900	33	600-655
2.7	00	20	200	000 000	00	


Tab. 64

Mechanical characteristics

Rm	Rp (02)	A	НВ
N 	N mm ²	%	—
205	165	10	60-80

TT 100

TT 100 Dimensions

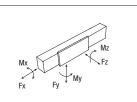
Technical data

Useful stroke CU [mm]	Total length LT [mm]	G Dimension [mm]	Weight [Kg]		
46	246	50	2.5		
114	346	50	3		
182	446	50	4		
252	546	50	5		
320	646	50	6		
390	746	50	7		
458	846	50	7		
526	946	50	8		
596	1046	50	9		
664	1146	50	10		
734	1246	50	11		
802	1346	50	11		
940	1546	50	13		
Note: for the ballscrew 12/10 the max. useful stroke is 664 mm. Tab. 66					

Technical data

	Туре
	TT 100
Max. speed [m/s]	See page PS-35
Carriage weight [kg]	0.93
Rail size [mm]	12 mini
	Tab. 68

Moments of inertia of the aluminum body

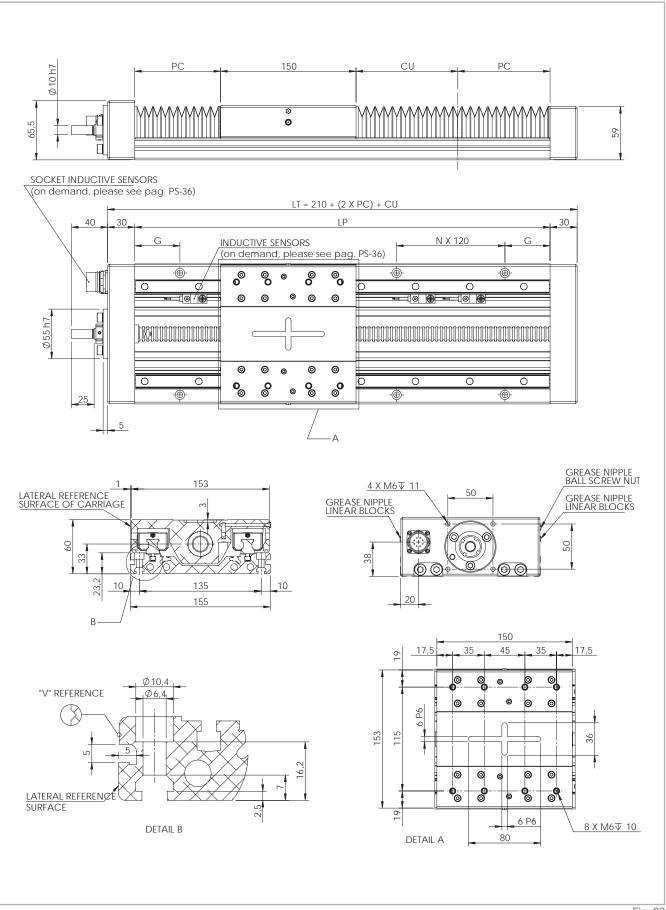

Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TT 100	0.006	0.144	0.150
			Tab. 69

Ball screw precision

Туре	Max. positioning precision [mm/300mm]			eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TT 100 / 12-05	0.023	0.05	0.01	0.02
TT 100 / 12-10	0.023	0.05	0.01	0.02
				Tab. 67

Load capacity F_x

Туре		F _x [N]	
	Screw	Stat.	Dyn.
TT 100	12-05	9000	4300
			Tab. 70



Load capacity

Туре	F [N	: V 4]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TT 100	9980	6280	9980	274	349	349
See verification under static load and lifetime on page SL-2 and SL-3						

> TT 155

TT 155 Dimensions

Technical data

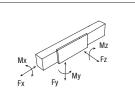
Useful stroke CU [mm]	Total length LT [mm]	G Dimension [mm]	Weight [Kg]		
92	340	20	7.5		
140	400	50	8.5		
188	460	20	9		
236	520	50	10		
282	580	20	11		
330	640	50	12		
378	700	20	13		
424	760	50	13		
520	880	50	15		
614	1000	50	17		
710	1120	50	18		
806	1240	50	20		
900	1360	50	21		
994	1480	50	23		
1090	1600	50	25		
1184	1720	50	26		
1280	1840	50	28		
1376	1960	50	30		
1470	2080	50	31		
Note: for the ballscrew Ø16 the max. useful stroke is 994 mm.					

Ball screw precision

Туре	Max. positioning precision [mm/300mm]			eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TT 155 / 16-05	0.023	0.05	0.005	0.045
TT 155 / 16-10	0.023	0.05	0.005	0.045
TT 155 / 20-05	0.023	0.05	0.005	0.045
TT 155 / 20-20	0.023	0.05	0.005	0.045
				Tab. 73

Technical data

	Туре
	TT 155
Max. speed [m/s]	See page PS-35
Carriage weight [kg]	2.93
Rail size [mm]	15
	Tab. 74


Moments of inertia of the aluminum body

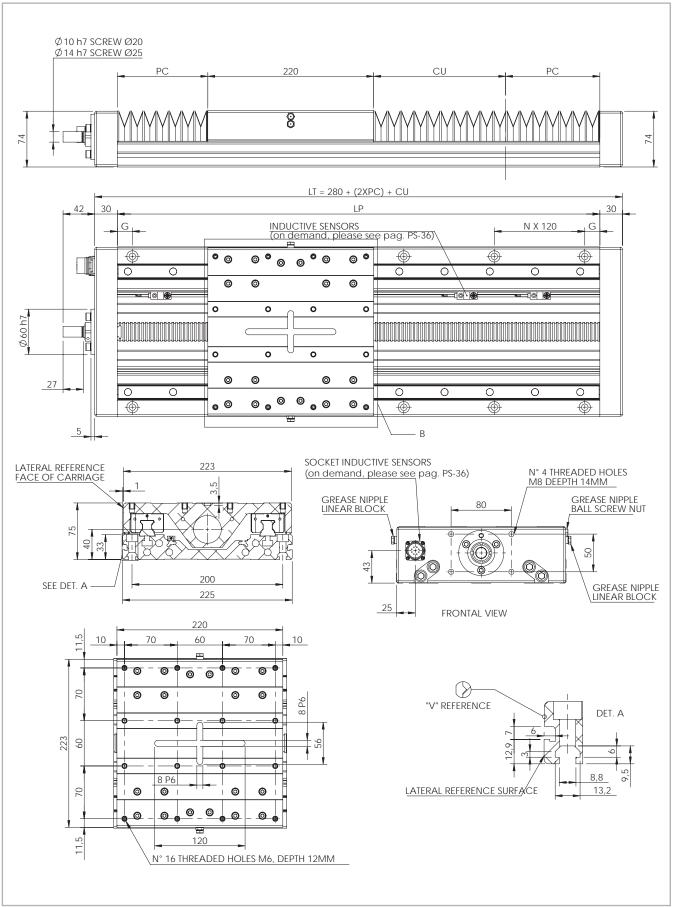
Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
TT 155	0.009	0.531	0.54
			Tab. 75

Load capacity F_x

Туре		F _x [N]			
	Screw	Stat.	Dyn.		
TT 155	16-05	17400	11800		
	16-10	18300	10500		
	20-05	25900	14600		
	20-20	23900	13400		
	20-20	23900	13400 Tab 7		

Tab. 76

Load capacity


Туре	F [1	: v i]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TT 155	96800	45082	96800	5082	2972	2972
Construction at an original statistical second	A					T 1

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 77

> TT 225

TT 225 Dimensions

Technical data

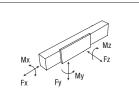
Useful stroke CU [mm]	Total length LT [mm]	G Dimension [mm]	Weight [Kg]	
92	400	50	15	
144	460	20	16	
196	520	50	17	
248	580	20	19	
300	640	50	20	
352	700	20	21	
404	760	50	23	
508	880	50	25	
612	1000	50	28	
714	1120	50	31	
818	1240	50	33	
922	1360	50	36	
1026	1480	50	39	
1234	1720	50	44	
1440	1960	50	49	
1648*	2200	50	54	
1856*	2440	50	60	
2062*	2680	50	65	
2270*	2920	50	70	
ote: for the ballscrew Ø20 the max. useful stroke is 1440 mm. Tab. 7				

Technical data

	Туре
	TT 225
Max. speed [m/s]	See page PS-35
Carriage weight [kg]	5.4
Rail size [mm]	20
	Tab. 80

Moments of inertia of the aluminum body

Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
TT 225	0.038	2.289	2.327
			Tab. 81

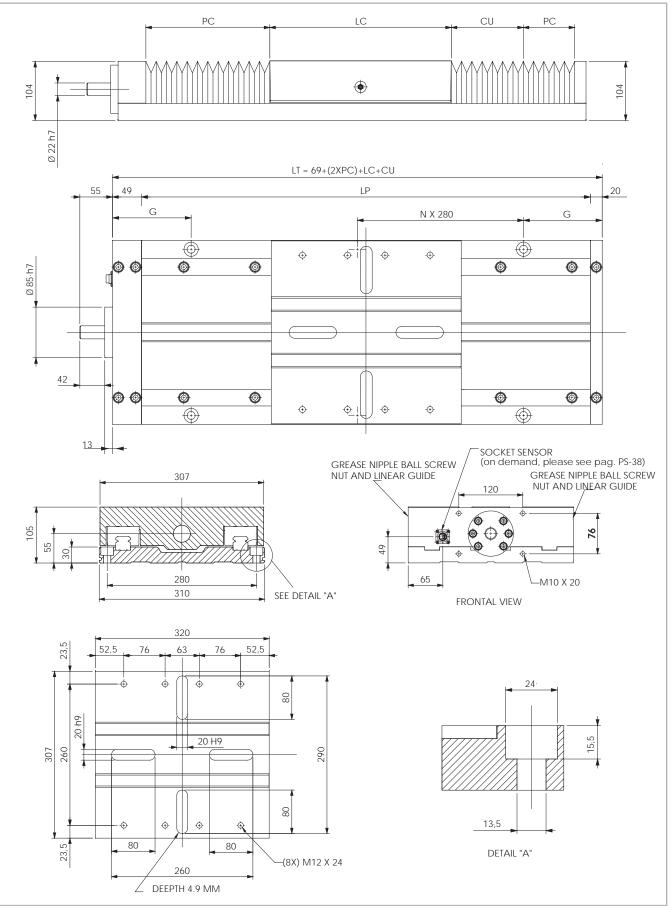

x. useful stroke is 1440 mm. * For the indicated lengths Rollon does not guarantee the tolerance values shown on pag. PS-33

Ball screw precision

Туре		sitioning nm/300mm]	Max. rep precisio	
	ISO 5 ISO 7		ISO 5	ISO 7
TT 225 / 20-05	0.023	0.05	0.005	0.045
TT 225 / 20-20	0.023	0.05	0.005	0.045
TT 225 / 25-05	0.023	0.05	0.005	0.045
TT 225 / 25-10	0.023	0.05	0.005	0.045
TT 225 / 25-25	0.023	0.05	0.005	0.045
	Та			

Load capacity F_x

Туре	F _x [N]			
	Screw	Stat.	Dyn.	
	20-05	25900	14600	
	20-20	23900	13400	
TT 225	25-05	41200	19800	
	25-10	32600	16000	
	25-25	30500	15100	
			Tab. 82	


Load capacity

Туре	F [N	y 1]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TT 225	153600	70798	153600	12288	9984	9984

See verification under static load and lifetime on page SL-2 and SL-3

TT 310

TT 310 Dimensions

Technical data

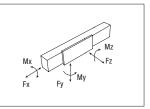
Useful stroke CU [mm]	Total length LT [mm]	G Dimension [mm]	Weight [Kg]
100	560	140	47
150	625	172.5	50
200	690	65	53
250	760	100	56
300	825	132.5	59
350	895	167.5	62
400	965	62.5	65
450	1030	95	68
500	1100	130	71
600*	1235	197.5	77
800*	1505	192.5	89
1000*	1750	175	100
1200*	2000	160	111
1600*	2495	127.5	133
2000*	2990	235	156
2400*	3485	202.5	178
3000*	4225	292.5	211
* For the indicated lengths	Tab. 84		

Technical data

	Туре
	TT 310
Max. speed [m/s]	See page PS-36
Carriage weight [kg]	16.6
Rail size [mm]	30
	Tab. 86

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
TT 310	0.1251	8.56	8.008
			Tab. 87


values shown on pag. PS-33

Ball screw precision

Туре		sitioning nm/300mm]	Max. repeatability precision [mm]	
	ISO 5	ISO 7	ISO 5	ISO 7
TT 310 / 32-05	0.023	0.05	0.008	0.045
TT 310 / 32-10	0.023	0.05	0.008	0.045
TT 310 / 32-32	0.023	0.05	0.008	0.045
				Tab. 85

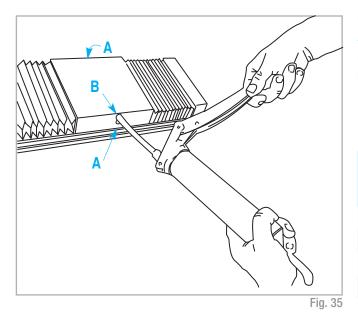
Load capacity F_x

Туре	Fx ^{*1} [N]				
	Screw	Stat.	Dyn.		
	32-05	11538	8947		
TT 310	32-10	11538	8947		
	32-32	11538	8947		
*1 Referred to the Max axial load	Tab. 88				

Load capacity

Туре	F, [Ň]		F _z [N]		M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TT 310	230500	128492	274500	146031	30195	26625	22365

See verification under static load and lifetime on page SL-2 and SL-3


Tab. 89

Lubrication

TT linear units with ball bearing guides

TT Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every 2000 Km or 1 year of use, based on the value reached first. If a longer

Ball screws

The ball screw nuts of Rollon TT series linear units must be relubricated every 100 km.

Standard lubrication

Lubrication of the ball bearing blocks and the ball screw nut is facilitated by grease nipples located on the sides of the carriage of the Rollon TT series actuators. The linear units are lubricated with class NLGI2 lithium soap grease. service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

- Insert the tip in the specific grease nipples:
- A Linear block B Ball screw nut
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Quantity of lubricant necessary for block re-lubrication at each point:

Туре	Quantity [cm ³] for grease nipple
TT 100	1.4
TT 155	1.4
TT 225	2.8
Π 310	5.6
	Tab. 90

Amount of lubricant recommended for ball screw nut re-lubrication

Туре	Quantity [cm ³] for grease nipple
12-05	0.3
12-10	0.3
16-05	0.41
16-10	0.78
20-05	0.79
20-20	1
25-05	1.2
25-10	1.2
25-25	1.58
32-05	1.8
32-10	2.0
32-32	3.0
	Tab 01

Accuracy certificate >

The Rollon TT series linear units are high accurate products. The base and the carriages are made of aluminum extrusions that are manufactured by means of high precision machining of all external faces and all mounting surfaces of mechanical components (linear guides, ball screw supports, etc.). This results in excellent repeatability, positioning accuracy and running parallelism. Rollon TT series linear units are 100% tested and will be delivered with a certificate of accuracy.

CERTIFICATE OF INSPECTION

The certificate shows all parallel tolerances during the movement of the carriage on the base unit. The figures can be used for eventual electronic compensations during the movement of the linear units.

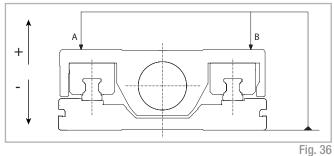
The maximum deviations are shown as follows:

- G1 rolling 50 µm
- G2 pitching 50 µm
- G3 yawing 50 µm
- G4 parallelism carriage/base unit 50µm

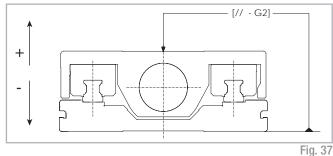
Туре	Screw	Fixing torques screws 12.9			
		On aluminum	On steel		
TT 100	M6	10 Nm	14 Nm		
TT 155	M6	10 Nm	14 Nm		
TT 225	M8	15 Nm	30 Nm		
TT 310	M12	60 Nm	120 Nm		
			Tab. 92		

Note :Values for base unit length (Lt) $<_$ 2000 mm

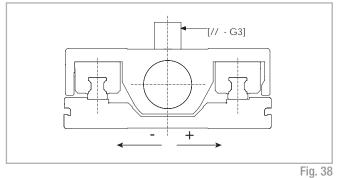
These values are measured while linear unit is fixed with brackets on a reference table with parallelism error < 2 µm.

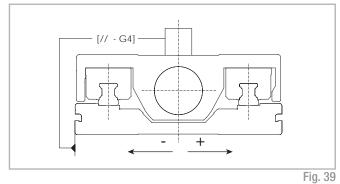

The fixing torques of the bolt must follow the indicated values in the table.

TYPE AND MODEL				
Type	T155		E	
Stroke	710			
Ball screw diam.	16	nin		
Ball screw lead		nin		
Serial rif.	Nº - 0407			
DECOLUCIO E TRAL				
SPECIFICATION				
Measurement pitch		תה הה		
Max error accepted on e				
61		μm		
G2		μm		
G3 G4		μm μm		
64	QU	μπ		
TEST RESULTS				
Max error on G1		μm		
Max error on G2		μm		
Max error on GS		μm		
Max enter on G4	14	μm		
Date	19/10/07			
Lemperature (C*)	(°C)20			
Chechec by				
Chechec by				
Chechec by				
	DOCITIVO			
	POSITIVO			
Final test result	POSITIVO			
Chechec by Final xest result: Signature	POSITIVO			
Final test result	POSITIVO			
Final test result	POSITIVO			
Final test result	POSITIVO			
Final test result	POSITIVO			
Final sea result: Signature				
Final test result		Tel.: (+39) Far: (+39)	139 62 59 1 139 62 59 205	

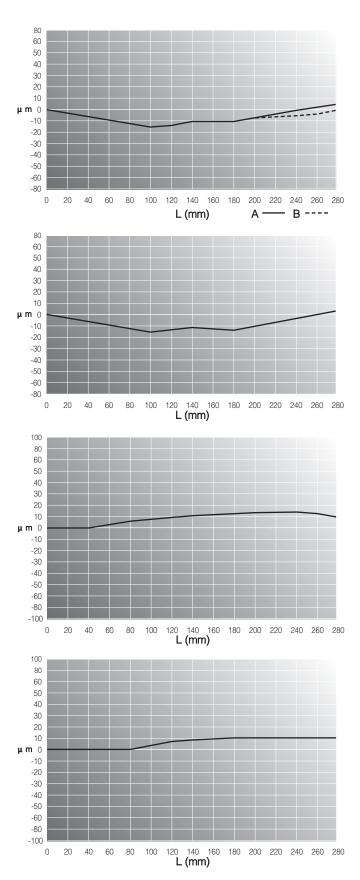

Ρ

ATTENTION: The mentioned accuracy grades are valid only if the linear unit is fixed on a continuous mounting surface with the same length. The errors of the mounting surface may negatively influence the accuracy of the Rollon linear unit. Rollon does not guarantee the above mentioned parallelism tolerances for applications when the linear unit is mounted without support or as a cantilever.


Precision G1


Precision G2

Precision G3



Precision G4

The graphs below show an example of measurement of accuracy along the stroke the deviation is given.

Each actuator delivered is provided with the graphs.

Critical speed

x10

400

460

520

580

640

700

760

860

1000

Lt [mm]

1120

1240

1360

1480

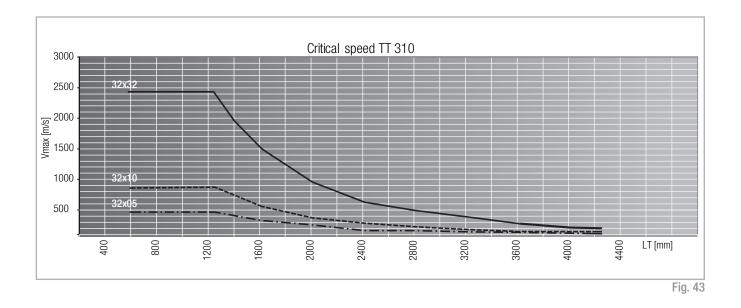
1720

1960

2200

0,600 0,400 0,200 0,000

The maximum linear speed of Rollon TT series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.

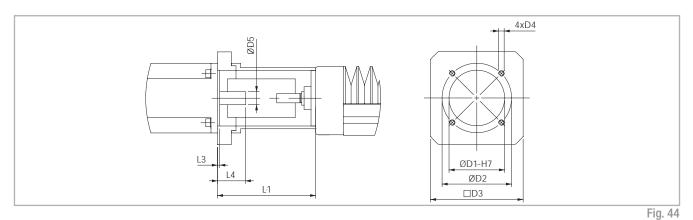


P S

2920

2440

2680

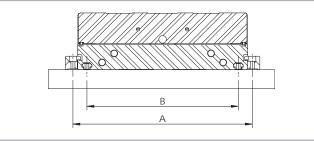


Accessories

Mounting of the motor

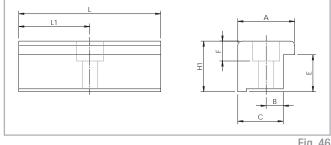
Rollon TT Series linear units can be supplied with different types of motor mounts, adapter flanges, and with torsionally stiff couplings for screw and motor connections that enable fast, hassle-free assembly of the motors.

The types of bells available for the related units are shown in the table motor mounts:


P S

Units	[mm]
Onito	լուույ

Type of unit	Ø D1	Ø D2	Ø D3	D4	Ø	D5	L1	L3		_4	Kit
unit					min.	max.			min.	max.	code
	60	75	65	M6	5	16	68	4	25	27	G000321
	73.1	98.4	86	M5	5	16	76.7	2	33.7	35.7	G000322
TT 100	40	64.5	65	M5	5	16	68	4	25	27	G000336
	50	70	65	M5	5	16	77.5	3.5	34.5	36.5	G000433
	70	85	80	M6	10	20	90	4	20	34	G000311
	70	90	80	M5	10	20	90	5	20	34	G000312
	80	100	90	M6	10	20	90	4	20	34	G000313
	50	65	80	M5	10	20	90	5	20	34	G000314
TT 155	60	75	80	M6	10	20	90	4	20	34	G000315
	50	70	80	M5	10	20	90	5	20	34	G000316
	73	98.4	85	M5	10	20	90	4	20	34	G000317
	55.5	125.7	105	M6	10	20	100	5	30	44	G000318
	60	99	85	M6	10	20	98	4	28	42	G000319
	80	100	100	M6	10	28	106	5	30	48	G000302
	95	115	100	M8	10	28	106	5	30	48	G000303
	110	130	115	M8	10	28	106	5	30	48	G000304
	60	75	100	M6	10	28	106	5	30	48	G000305
TT 225	70	85	100	M6	10	28	106	5	30	48	G000306
11 225	70	90	100	M5	10	28	106	5	30	48	G000307
	50	70	96x75	M4	10	28	101	4	30	48	G000308
	55.5	125.7	105	M6	10	28	106	5	30	48	G000309
	73.1	98.4	96	M5	10	28	101	3	30	48	G000310
	130	165	150	M10	10	28	106	5	30	48	G000363
TT 310						Option					Tab 02


Tab. 93

Fixing by brackets

Туре	A Unit mm	B Unit mm
TT 100	112	59
TT 155	167	135
TT 225	237	200
		Tab. 94

Fixing brackets

Туре	A	B	С	E	F	D1	D2	H1	L	L1	Code Rollon
TT 100	18.5	6	16	7	4.5	9.5	5.3	9.8	50	25	1002353
TT 155	20	6	16	11	7	9.5	5.3	15.8	50	25	1002167
TT 225	20	6	16	13	7	9.5	5.3	17.8	50	25	1002354
											Tab. 98

Fig. 46

T nuts

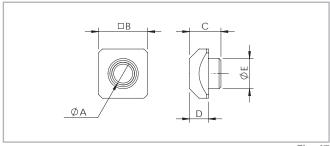


Fig. 47

Туре	ØA	□B	C	D	ØE	Code Rollon
TT 100	M4	8	-	3.4	-	1001046
TT 155	M5	10	6.5	4.2	6.7	1000627
TT 225	M6	13	8.3	5	8	1000043
						Tab. 99

End cap	Туре	Code
6	TT 100	G000245
01	TT 155	G000244
	TT 225	G000244
~	TT 310	/
		Tab. 100

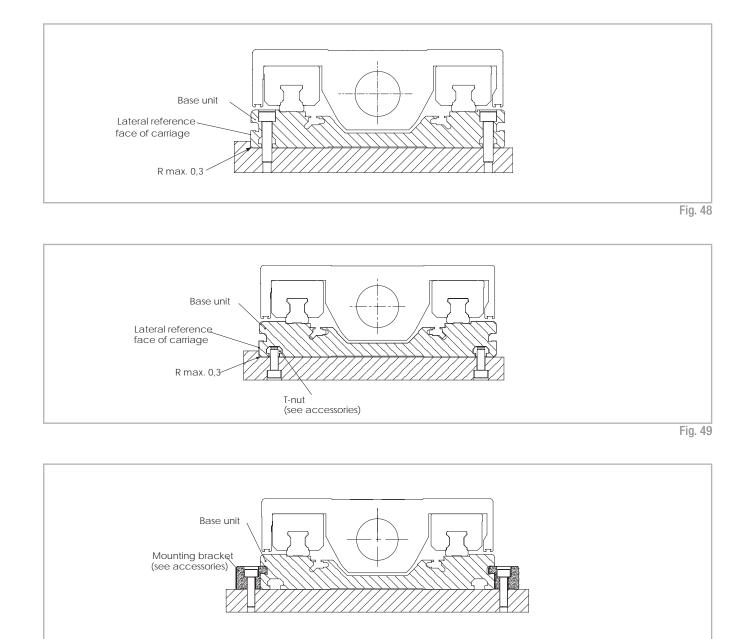
9 Pin Fixed Connector	Туре	Code
	TT 100	G000191
	TT 155	G000191
	TT 225	G000191
	TT 310	/
		Tab 101

Tab. 101

Proximity	Туре	PNP-NO	PNP-NC
	TT 100	G001981	G001980
	TT 155	G001981	G001980
	TT 225	G001981	G001980
	TT 310	/	/
			Tab. 95

Cable Strain Relief	Туре	Code
	TT 100	G000249
2	TT 155	G000248
00	TT 225	G000248
	TT 310	/
		Tab. 96

9 Pin Back-Shell Connector	Туре	To crimp	To solder
	TT 100	6000516	6000589
1350	TT 155	6000516	6000589
6	TT 225	6000516	6000589
	TT 310	/	/
			Tah 07

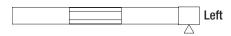

Tab. 97

P S

Assembly kits

The Rollon TT series linear units must be mounted to the application's surface in an appropriate way in order to achieve maximum accuracy of the system. The evenness of the mounting surface determines the final result of the movement of the system. The aluminum base and the carriage of the Rollon TT linear units have a lateral reference surface, indicated by a groove (except on the TT 310). On the carriage's surface are two reference slots at 90° angles, useful for accurate mounting of

X-Y-systems. The Rollon TT series linear units can be fixed to the mounting surface from above the base unit by screws (fig. 48), through T-slots (fig. 49), or through appropriate mounting brackets (fig. 50), depending on the application. For high accuracy applications, Rollon recommends bolting the unit down from above. For mounting dimensions please refer to the dimensional drawings of the units.


Ordering key // 🗸

Identification code for the TT linear units

Т	10	1205	5P	0880	1A			
	10=100	12-05	5P=IS0 5					
	15=155	12-10	7N=IS0 7					
	22=225	16-05						
	31=310	16-10						
		20-05						
		20-20						
		25-05						
		25-10						
		25-25						
		32-05			Head configuration coo	de		
		32-10		L=total length	of th unit			
		32-32	Type see fro.	m pg. PS-24 to	pg. PS-30			
		B/S diameter	and lead se	e from pg. PS-2	24 to pg. PS-30			
	Size see from	n pg. PS-24 to	pg. PS-30					
Linear unit ser	Linear unit series ∏ see pg. PS-22							
In order to crea	In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com							Configure Actuator

Left / right orientation

Right

TV series description

τv

TV series linear units have a rigid anodized aluminum extrusion with a square cross-section. Transmission of motion is achieved by means of a precision C5 or C7 rolled ball screw drive.

The payload is supported by a dual block, single linear guide system which ensures high precision and high rigidity.

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon TV series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the accuracy and high mechanical properties necessary to accommodate the bending and torsional stresses. Aluminum alloy 6060 was used and was extruded with dimensional tolerances complying with EN 755-9 standards. T-slots are provided in the side and bottom faces to facilitate mounting.

Drive system

Rollon TV series linear units use a precision rolled ball screw. The standard precision class of the ball screw used is ISO 7 without a preloaded nut. ISO 5 precision class with preloaded nut is available upon request. The ball screws of linear units can be supplied with different diameter and leads. Use of this type of technology makes it possible to obtain the following features:

- High speed (for long pitch screws)
- Highly accurate thrust
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

General data about aluminum used: AL 6060

Chemical composition [%]

Carriage

The carriage of the Rollon TV series linear units is made entirely of anodized aluminum. The dimensions vary depending on the size of the actuator. The carriage is installed on 2 linear runner blocks on a single linear guide rail.

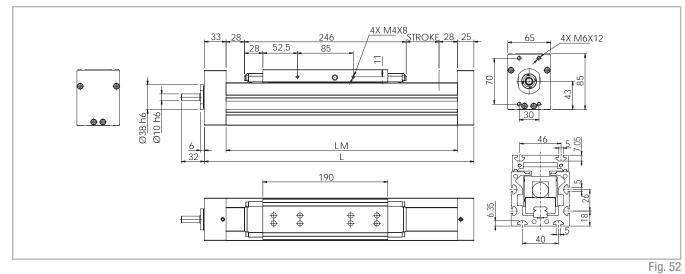
Protection

Rollon TV series linear units are equipped with an external steel protective strip in order to protect mechanical components inside the linear units against contaminants. A resin deflector compresses the steel strip on its own magnetic base with very low friction.

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 102

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2.7	69	23	200	880-900	33	600-655


Tab. 103

Mechanical characteristics

Rm	Rp (02)	A	НВ
N mm ²	N mm ²	%	—
205	165	10	60-80

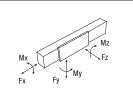
TV 60

TV 60 Dimensions

Technical data

	Туре
	TV 60
Max. useful stroke length [mm]	2000
Max. speed [m/s]	See page PS-47
Basement length LM [mm]	LT - 58
Total length LT [mm]	Stroke + 360
Carriage weight [kg]	1.41
Zero travel weight [kg]	4.6
Weight for 100 mm useful stroke [kg]	0.65
Rail size [mm]	15
	Tab. 105

Ball screw precision

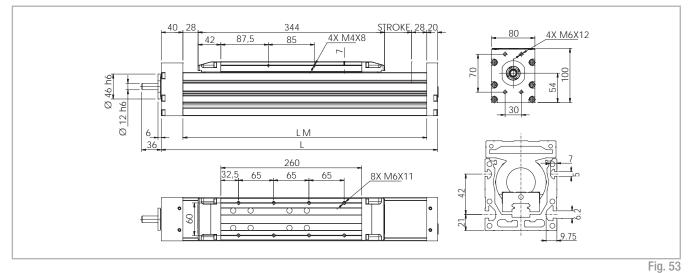

Туре		sitioning nm/300mm]	Max. rep precisio	eatability on [mm]
	ISO 5	ISO 7	ISO 5	IS0 7
TV 60 / 16-05	0.023	0.05	0.01	0.05
TV 60 / 16-10	0.023	0.05	0.01	0.05
TV 60 / 16-16	0.023	0.05	0.01	0.05
				Tab. 106

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	Ι _ρ [10 ⁷ mm⁴]
TV 60	0.064	0.081	0.145
			Tab. 107

Load capacity F_x

Туре	Fx ¹¹ [N]			
	Screw	Stat.	Dyn.	
	16-05	4551	4327	
TV 60	16-10	4551	4327	
	16-16	4327		
*1 Referred to the Max axi	al load on the bearings r	ot the Ball Screw	Tab. 108	



Load capacity

Туре	۲ (۱	: Ň]	F [1	: z V]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 60	35000	18000	35000	18000	286	1353	1353
See verification under static load and lifetime on page SL-2 and SL-3							

TV 80

TV 80 Dimensions

Technical data

	Туре
	TV 80
Max. useful stroke length [mm]	3000
Max. speed [m/s]	See page PS-47
Basement length LM [mm]	LT - 60
Total length LT [mm]	Stroke + 460
Carriage weight [kg]	2.5
Zero travel weight [kg]	7.8
Weight for 100 mm useful stroke [kg]	0.95
Rail size [mm]	20
	Tab. 110

Ball screw precision

Туре		sitioning nm/300mm] ISO 7	precisio	eatability on [mm] ISO 7
	150 5	1507	ISO 5	1507
TV 80 / 20-05	0.023	0.05	0.01	0.05
TV 80 / 20-20	0.023	0.05	0.01	0.05
				Tab. 111

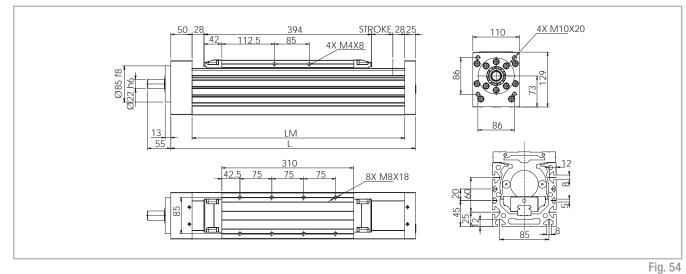
Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TV 80	0.106	0.152	0.258
			Tab. 112

Load capacity F_x

Туре	F ^{*1} [N]					
	Screw	Stat.	Dyn.			
TV 80	20-05	5705	4912			
10 00	20-20	5705	4912			
*1 Referred to the Max axial load on the bearings not the Ball Screw Tab. 113						

Mx Fx Fy My


Load capacity

Туре	F [f	: V V]	F [1	: z V]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 80	59900	34200	59900	34200	646	1573	1573
Coo vorification under static lo	od and lifatima an	nogo CL 2 and C	1.2				Tab 114

See verification under static load and lifetime on page SL-2 and SL-3

TV 110

TV 110 Dimensions

Technical data

	Туре
	TV 110
Max. useful stroke length [mm]	3000
Max. speed [m/s]	See page PS-47
Basement length LM [mm]	LT - 75
Total length LT [mm]	Stroke + 525
Carriage weight [kg]	5.33
Zero travel weight [kg]	16.8
Weight for 100 mm useful stroke [kg]	1.9
Rail size [mm]	25
	Tab. 115

Ball screw precision

Туре		sitioning nm/300mm]		eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TV 110 / 32-05	0.023	0.05	0.01	0.05
TV 110 / 32-10	0.023	0.05	0.01	0.05
TV 110 / 32-32	0.023	0.05	0.01	0.05
				Tab. 116

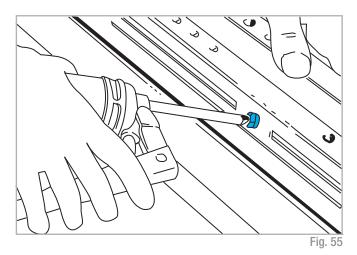
Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	Ι _ρ [10 ⁷ mm⁴]
TV 110	0.432	0.594	1.026
			Tab. 117

Load capacity F_x

Туре	F _x ^{*1} [N]					
	Screw	Stat.	Dyn.			
	32-05	11538	8947			
TV 110	32-10	11538	8947			
	32-32	11538	8947			
*1 Referred to the Max axial load on the bearings not the Ball Screw Tab. 118						

Mz Fz ΨMy Fy


Load capacity

Туре	F []	: y V]	F [1	: z V]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 110	85000	49600	85000	49600	1080	2316	2316
Soo vorification under static lo	ad and lifatima an	page CL 2 and C	2 2				Teb 110

Lubrication >

TV 60, TV 80, TV 110 linear units

Rollon TV series linear units are equipped with ball bearing guides lubricated with grease lithium soap based grade 2. Re-lubrication is required every 3-6 months or approximately 2000 Km of linear travel. The application environment and applied loads may infl uence the re-lubrication periods.

- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult enviromental conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Quantity of lubricant necessary for block re-lubrication at each point:

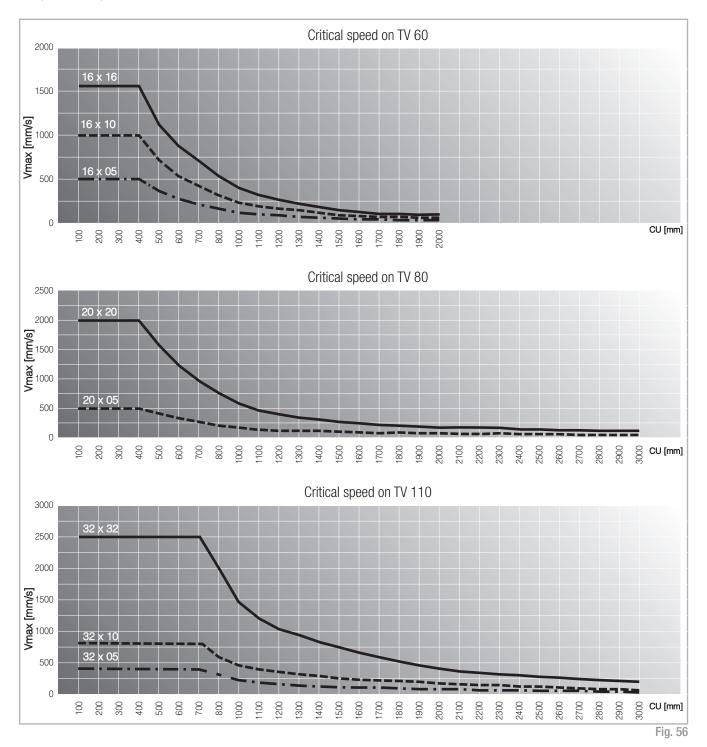
Туре	Quantity [g] of grease for each nipple
TV 60	1.4
TV 80	2.6
TV 110	5.0
	Tab. 120

Ball screws

The ball screw nuts of Rollon TV series linear units must be re-lubricated every 100 km.

Grease Nipples position

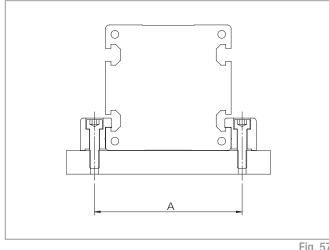
The position of grease nipples for the linear blocks and for the ball screw nuts are indicated in the specific drawings of each product.


Amount of lubricant recommended for ball screw nut re-lubrication

Туре	Quantity [g] for grease nipple
16-05	0.6
16-10	0.8
16-16	1.0
20-05	0.9
20-20	1.7
32-05	2.3
32-10	2.8
32-32	3.7
	Tab. 121

P S

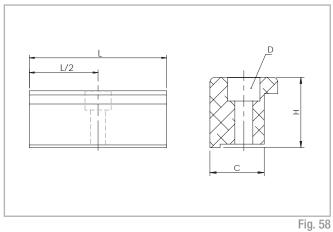
Critical speed


The maximum linear speed of Rollon TV series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.

Accessories >

Fixing by brackets

The linear motion systems used for the Rollon TV series linear units enables them to support loads in any direction. They can therefore be installed in any position. To install the units, we recommend the use of the dedicated slots in the extruded bodies as shown below.



Туре	A [mm]
TV 60	77
TV 80	94
TV 110	130
	Tab. 122

Warning: Do not secure the linear units by means of the T-slots in the Drive head or Idle head at either end of the actuator.

Fig. 57

Fixing bracket

Anodized aluminum block for fixing the linear units through the side slots

Dimensions / Unit [mm]

С

16

16

31

19.5

22.5

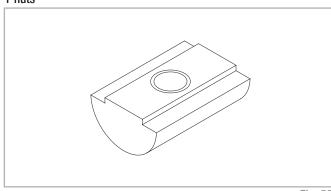
27

35

50

100

Туре


TV 60

TV 80

TV 110

of the body.

T-nuts

Code Rollon Slot dimension M5 M6 M8 [mm] 5 6001038 _ _ 6 6001863 8 6001044 6001045 Tab. 124

Steel nuts to be used in the slots of the body.

Code

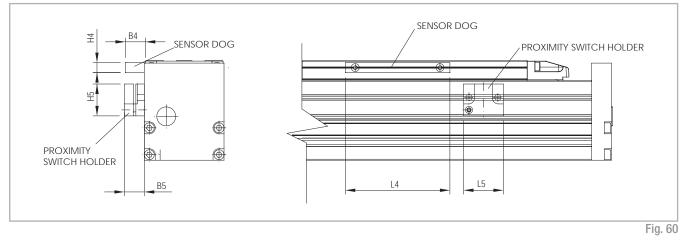
Rollon

1002358

1004552

1002360 Tab. 123

D


M5

M6

M10

P S

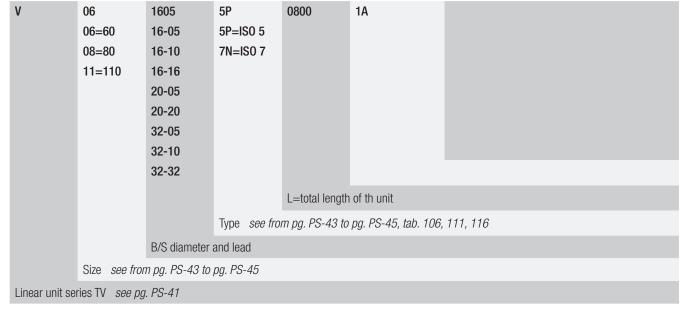
Proximity

Proximity switch holder

Red anodized aluminum block, equipped with T-nuts for fixing into the body slots.

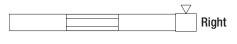
Sensor dog

Zinc-plated steel plate, mounted on the carriage and used for the proximity switch operation.


Туре	B4	B5	L4	L5	H4	H5	Sensor	Proximity holder set	Sensor dog
TV 60	20	20	105	40	10	32	Ø12	G000849	G000581
TV 80	20	20	105	40	10	32	Ø12	G000849	G000581
TV 110	20	20	105	40	10	32	Ø12	G000850	G000581

Unit [mm]

Tab. 125


Identification code for the TV linear units

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Configure Actuator

Left / right orientation

TVS series description

TVS

TVS series linear actuators have a rigid anodized and extruded aluminum alloy profile and transmission of motion is achieved by means of a precision rolled ball screw drive. Recirculating ball guides with cage as linear motion components ensure high precision and high rigidity. TVS linear actuators are available with profiles of different sizes: 170 - 220.

Fig. 61

P S

The components

Extruded bodies

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon TVS series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Drive system

Rollon TVS series linear units use a precision rolled ball screw. The standard precision class of the ball screw used is ISO 7 without a preloaded nut. ISO 5 precision class with preloaded nut is available upon request. The ball screws of linear units can be supplied with different diameter and leads. This type of technology makes it possible to obtain the following features:

- Highly accurate thrust
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

General data about aluminum used: AL 6060

Chemical composition [%]

Carriage

The carriage of the Rollon TVS series linear units is made entirely of anodized aluminum. The dimensions vary depending on the size of the actuator.

Protection

Rollon TVS series linear units can be equipped with an external steel protective strip in order to protect mechanical components inside the linear units against contaminants. A resin deflector compresses the steel strip on its own magnetic base with very low friction.

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 126

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	С°
2.7	69	23	200	880-900	33	600-655
						Tab 107

Tab. 127

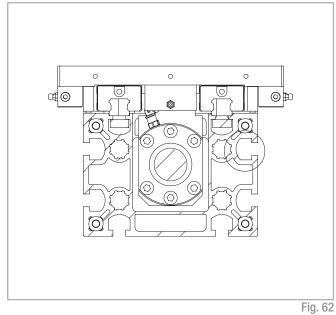
Mechanical characteristics

Rm	Rp (02)	A	НВ
N 	N mm ²	%	_
205	165	10	60-80

P

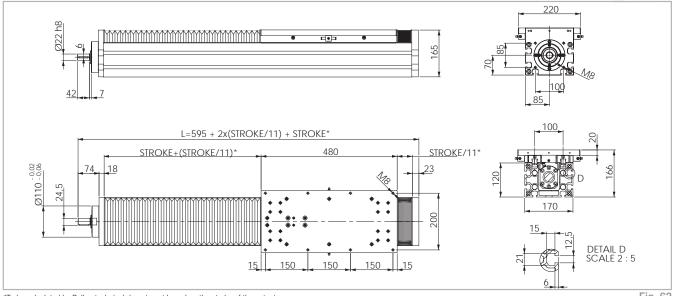
The linear motion system

The linear motion system has been designed to meet load capacity and precision conditions of a wide variety of applications.


TVS with recirculating ball guides

The recirculating ball guides used for TVS have the cage system. The cage included has two purposes: it reduces the friction between the guide and the slider, increasing their service life, and allows lubrication refills to be performed more rarely. The assembly of recirculating ball guides normally also involves the machining of the related seat in the profile. Due to the cage keeping the ball bearings apart, these units are regarded as permanently lubricated; considering the average life of handling devices, no maintenance is needed before 5000km.

Main advantages of this configuration:


- High load capacity
- Long lasting
- High precision
- High rigidity

TVS section

TVS 170

TVS 170 Dimensions

*To be calculated by Rollon technical department based on the stroke of the actuator.

Fig. 63

Technical data

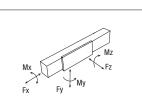
	Туре
	TVS 170
Max. useful stroke length [mm]	3000
Max. speed [m/s]	See page PS-57
Carriage weight [kg]	9.9
Zero travel weight [kg]	28.9
Weight for 100 mm useful stroke [kg]	2.7
Rail size [mm]	20
	Tab. 129

Moments of inertia of the aluminum body

Load capacity F_x

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TVS 170	1.944	0.799	2.742
			Tab. 131

Ball screw precision


Туре	Max. positioning precision [mm/300mm]		Max. rep precisio	
	ISO 5	ISO 7	ISO 5	ISO 7
TVS 170	0.023	0.05	0.02	0.02
				Tab. 130

Туре	F _x [N]				
	Screw	Stat.	Dyn		
	32-05	64200	25900		
TVS 170	32-10	66300	29800		
	32-20	49700	24100		

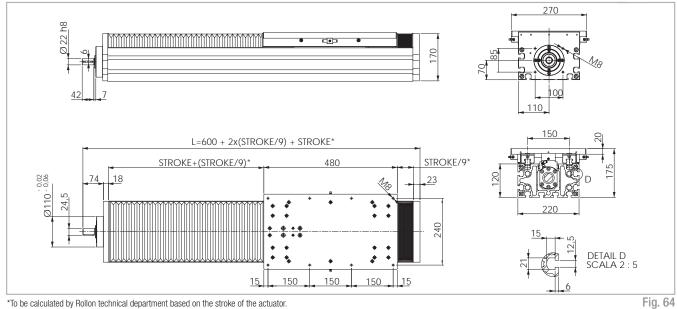
32-32

Tab. 132

22700

48600

Load capacity


Туре	F [^	: y V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TVS 170	153600	70798	153600	7680	29184	29184
Construction at a station		01 0 10				T 400

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 133

TVS 220

TVS 220 Dimensions

Technical data

	Туре
	TVS 220
Max. useful stroke length [mm]	3500
Max. speed [m/s]	See page PS-57
Carriage weight [kg]	13.3
Zero travel weight [kg]	37.4
Weight for 100 mm useful stroke [kg]	3.6
Rail size [mm]	25
	Tab. 134

Rall

Ball screw precision						
Туре	Max. po: precision [n	•	Max. rep precisio	eatability on [mm]		
	ISO 5	ISO 7	ISO 5	ISO 7		
TVS 220	0.023	0.05	0.02	0.02		
				Tab. 135		

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TVS 220	4.394	1.247	5.641
			Tab. 136

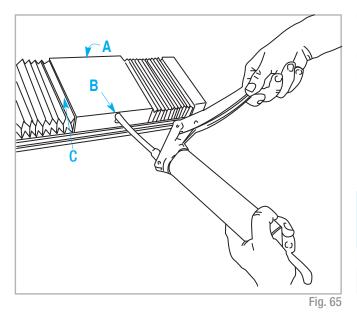
Load capacity $F_{\rm x}$							
Туре	F, [N]						
	Screw	Stat.	Dyn				
TVS 220	32-05	64200	25900				
	32-10	66300	29800				
	32-20	49700	24100				
	32-32	48600	22700				
			Tab. 137				

F7 ٢M٧ Fy Fx

Load capacity

Туре	F [1	= ŇJ	F_ [N]	M _x [Nm]	M, [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TVS 220	258800	116833	258800	19410	47360	47360
See verification under static load and lifetime on page SL-2 and SL-3						Tab. 138

Tab. 138


P S

Lubrication

TVS linear units with ball bearing guides

TVS Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every 5000 km or 1 year of use, based on the value reached first. If a longer

Ball screws

The ball screw nuts of Rollon TVS-series linear units must be relubricated every 100 km.

Standard lubrication

Lubrication of the ball bearing blocks and the ball screw nut is facilitated by grease nipples located on the sides of the carriage of the Rollon TVS series actuators. The linear units are lubricated with class NLGI2 lithium soap grease. service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Insert the tip in the specific grease nipples:

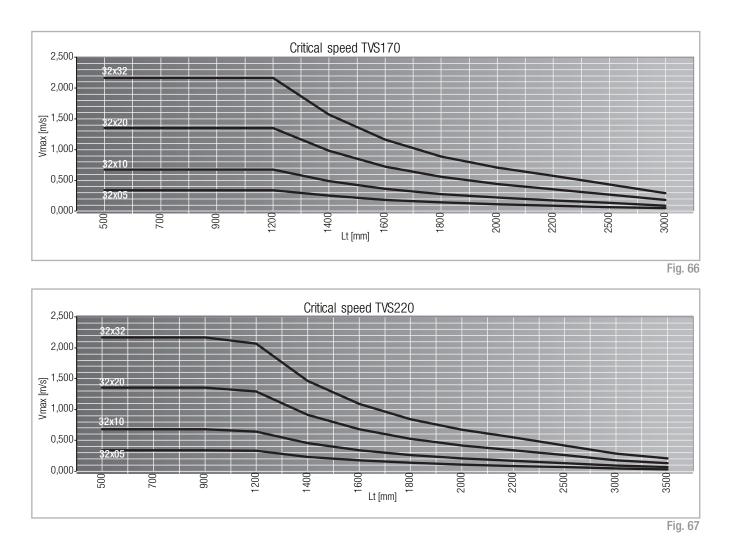
A and B - Linear block - C - Ball screw nut

- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Quantity of lubricant necessary for block re-lubrication at each point:

Туре	Quantity [cm ³] for grease nipple
TVS 170	1.4
TVS 220	2.8
	Teb 100

Tab. 139

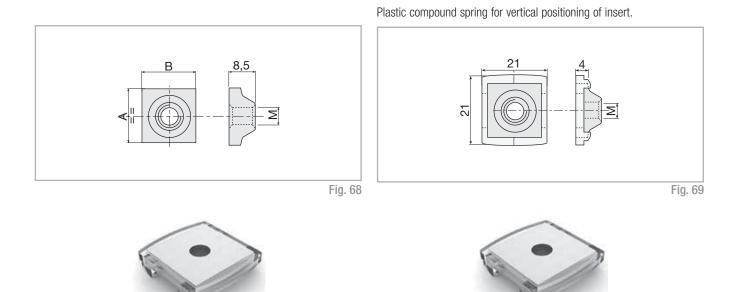

Amount of lubricant recommended for ball screw nut re-lubrication

Туре	Quantity [cm³] for grease nipple
32-05	1.8
32-10	2.0
32-20	2.0
32-32	3.0
	Tab 1/0

Tab. 140

Critical speed

The maximum linear speed of Rollon TVS series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.

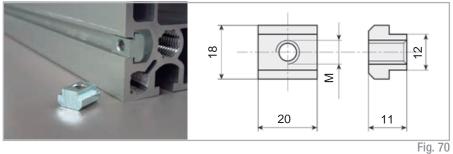


Accessory

Semi-rounded threaded inserts with spring

Material: galvanised steel. Important: to be inserted through the longitudinal slots before assembling.

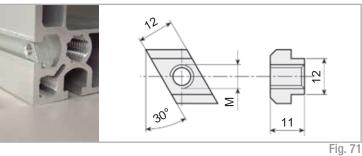
Suitable for series: TVS 170 - TVS 220



Thread	AxB					
	18x18	20x20				
M4	209.0031	209.0023				
M5	209.0032	209.0019				
M6	209.0033	209.1202				
M8	209.0034	209.0467				
		Tab. 141				

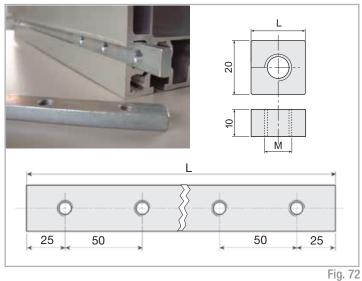
Spring	Code
Suitable for all insert 18x18	101.0732
	Tab. 142

Alignment nuts


Alignment nut for slot 12.5 mm

Material: galvanised steel. Suitable for series: TVS 170 - TVS 220

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124
	Tab. 143

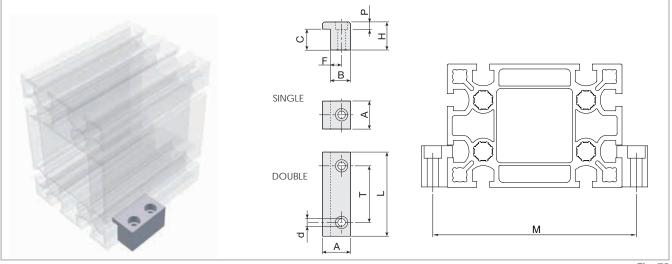

Alignment nut for slot 12.5 mm front insertable

Material: galvanised steel. Suitable for series: TVS 170 - TVS 220

Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125
	Tab. 144

Threaded nuts and plates

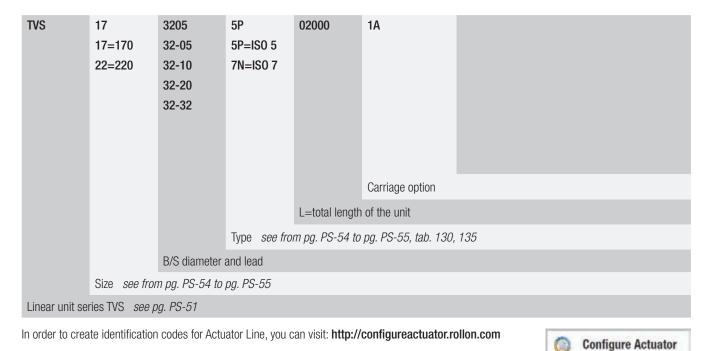
M12 (CH19) hexagonal-head screws can be used as stud bolts in profiles with 12.5 mm slots.

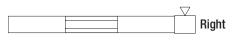

Material: galvanised steel. Suitable for series: TVS 170 - TVS 220

Thread	Threaded holes	L	Code
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2*	80	209.1776
M10	3*	150	209.1777
M10	4*	200	209.1778
M10	5*	250	209.1779
M10	6*	300	209.1780
M10	7*	350	209.1781
* Hole centre-di	Tab. 145		

* Hole centre-distance: 50 mm.

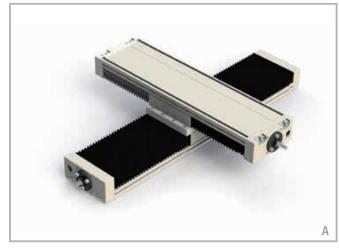
Profile anchor brackets

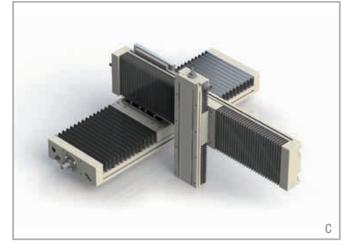

Material: alluminum alloy (Rs=310 N/mm²).


Profile	A	L	т	d	Н	Р	C	F	В	М	Single code	Double code
TVS 170	30	90	50	11	40	11	28.3	14	25	198	415.0767	415.0762
TVS 220	30	90	50	11	40	11	28.3	14	25	248	415.0767	415.0762

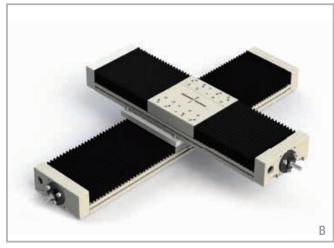
Identification code for the TVS linear units

Left / right orientation

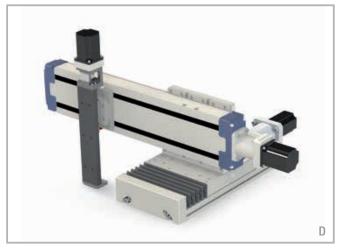



Rollon Precision System series linear units have been specifically designed to be modular and therefore to permit fast, trouble-free setup of multi-axis systems. Rollon can provide all the connection elements necessary for combining the various sizes and lengths of Precision System series linear units.

System with 2 horizontal axes


A - Direct fastening of the Y-axis on the X-axis ("base unit on carriage" assembly) using screws without intermediate brackets.

Three-axes system


C - Fastening of the Y-axis on the X-axis ("base unit on carriage" assembly) using 90° brackets.
Fastening of the Z-axis on the Y-axis ("carriage on carriage" assembly) using a "cross" plate.

System with 2 horizontal axes

B - Fastening of the Y-axis on the X-axis ("carriage on carriage" assembly) using a "cross" plate.

Three-axes system

D - Fastening of the Y-axis on the X-axis ("base unit on carriage assembly) using 90° brackets.

Static load and service life

Static load

In the static load test, the radial load rating F_y , the axial load rating F_z , and the moments M_x , M_y und M_z indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor S_0 is used, which accounts for the special conditions of the application defined in more detail in the table below:

All load capacity values refer to the actuator well fixed to a rigid structure. For cantilever applications the deflection of the actuator profile must be taken in account.

Safety factor S₀

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	2 - 3
Normal assembly conditions	3 - 5
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	5 - 7
	Fig. 1

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_{n} .

$$\frac{\mathsf{P}_{fy}}{\mathsf{F}_{y}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{P}_{fz}}{\mathsf{F}_{z}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{M}_{1}}{\mathsf{M}_{x}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{M}_{2}}{\mathsf{M}_{y}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{M}_{3}}{\mathsf{M}_{z}} \leq \frac{1}{\mathsf{S}_{0}}$$

Fig. 2

Fig. 3

The above formulae only apply to a one load case. If one or more of the forces described are acting simultaneously, the following calculation must be carried out:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}} \qquad P_{fy} = \text{acting load (y direction) (N)} \\ P_{fz} = \text{acting load (z direction) (N)} \\ M_{1}, M_{2}, M_{3} = \text{external moments (Nm)} \\ M_{x}, M_{y}, M_{z} = \text{maximum allowed moments in the different load directions (Nm)} \end{cases}$$

The safety factor S_0 can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

Belt safety factor referred to the dynamic F_x

Impact and vibrations	Speed / acceleration	Orietation	Safety Factor
No impacts	Low	horizontal	1.4
and/or vibrations		vertical	1.8
Light impacts	Medium	horizontal	1.7
and/or vibrations	IVIEUIUIII	vertical	2.2
Strong impacts	Llink	horizontal	2.2
and/or vibrations	High	vertical	3
			T 1 4

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km.

The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{\text{P}_{eq}} \cdot \frac{1}{\text{f}_{i}})^{3}$$

 $\begin{array}{ll} L_{km} & = \mbox{theoretical service life (km)} \\ \mbox{Fz-dyn} & = \mbox{dynamic load rating (N)} \\ P_{eq} & = \mbox{acting equivalent load (N)} \\ f_i & = \mbox{service factor (see tab. 2)} \end{array}$

Fig. 4

The effective equivalent load P_{eq} is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

For SP types

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 5

For CI and CE types

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}) \cdot F_{y}$$

Fig. 6

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f_i

f _i	
no shocks or vibrations, smooth and low-frequency changes in direction; (α < 5m/s ²) clean operating conditions; low speeds (<1 m/s)	1.5 - 2
Slight vibrations; medium speeds; (1-2 m/s) and medium-high frequency of the changes in direction (5m/s ² < α < 10 m/s ²)	2 - 3
Shocks and vibrations; high speeds (>2 m/s) and high-frequency changes in direction; (α > 10m/s ²) high contamination, very short stroke	> 3
	Tab. 2

Speedy Rail A Lifetime

The rated lifetime for SRA actuators is 80,000 Km.

Static load and service life Uniline

Static load

In the static load test, the radial load rating F_{y} , the axial load rating F_{z} , and the moments M_{x} , M_{y} und M_{z} indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor S_{0} is used, which accounts for the special conditions of the application defined in more detail in the table below:

Safety factor S_o

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	1 - 1.5
Normal assembly conditions	1.5 - 2
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	2 - 3.5
	Fig. 7

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_n .

$$\frac{P_{fy}}{F_{y}} \leq \frac{1}{S_{0}} \qquad \frac{P_{fz}}{F_{z}} \leq \frac{1}{S_{0}} \qquad \frac{M_{1}}{M_{x}} \leq \frac{1}{S_{0}} \qquad \frac{M_{2}}{M_{y}} \leq \frac{1}{S_{0}} \qquad \frac{M_{3}}{M_{z}} \leq \frac{1}{S_{0}}$$

The above formulae apply to a one load case. If one or more of the forces described are acting simultaneously, the following test must be carried out:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \leq \frac{1}{S_{0}}$$

The safety factor S_0 can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

P _{fy}	= acting load (y direction) (N)
F _y	= static load rating (y direction) (N)
P _{fz}	= acting load (z direction) (N)
F _z	= static load rating (z direction) (N)
M ₁ , M ₂ , M ₃	= external moments (Nm)
M_x , M_y , M_z	= maximum allowed moments
,	in the different load directions (Nm)

Fig. 9

Calculation formulae

Moments $\rm M_{v}$ and $\rm M_{z}$ for linear units with long slider plate

The allowed loads for the moments $M_{_y}$ and $M_{_z}$ depend on the length of the slider plate. The allowed moments $M_{_{Zn}}$ and $M_{_{yn}}$ for each slider plate length are calculated by the following formulae:

$$S_{n} = S_{min} + n \cdot \Delta S$$
$$M_{zn} = (1 + \frac{S_{n} - S_{min}}{K}) \cdot M_{z min}$$
$$M_{yn} = (1 + \frac{S_{n} - S_{min}}{K}) \cdot M_{y min}$$

Туре	M _{y min}	M _{z min}	S _{min}	ΔS	К
	[Nm]	[Nm]	[mm]		
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310	10	130
C75L	674	116	440		155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270
					Tab. 3

Moments M_v and M_z for linear units with two slider plates

Μ.,

M_z

The allowed loads for the moments $\mathrm{M_{v}}$ and $\mathrm{M_{z}}$ are related to the value of the distance between the centers of the sliders. The allowed moments $\rm M_{_{\rm VN}}$ and $M_{_{\! 7\! 1\!}}$ for each distance between the centers of the sliders are calculated by the following formulae:

$$\begin{split} L_n &= L_{min} + n \cdot \Delta L \\ M_y &= allowed moment (Nm) \\ M_z &= allowed moment (Nm) \\ M_z &= allowed moment (Nm) \\ M_{y min} &= minimum values (Nm) \\ M_{z min} &= minimum values (Nm) \\ L_n &= distance between the centers of the sliders (mm) \\ L_{min} &= minimum value for the distance between the centers of the sliders (mm) \\ \Delta L &= factor of the change in slider length \end{split}$$

Fig. 11

Туре	M _{y min}	M _{z min}	L _{min}	ΔL
	[Nm]	[Nm]	[mm]	
A40D	70	193	235	5
A55D	225	652	300	5
A75D	771	2288	416	8
C55D	492	90	300	5
C75D	1809	312	416	8
E55D	450	652	300	5
E75D	1543	2288	416	8
ED75D	3619	2288	416	8
				Tab. 4

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km. The corresponding values for each liner unit are listed in Table 45 shown

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^3$$

The effective equivalent load P is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

below. The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

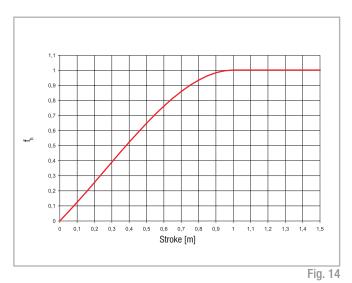
$$\begin{array}{ll} L_{km} & = \mbox{theoretical service life (km)} \\ C & = \mbox{dynamic load rating (N)} \\ P & = \mbox{acting equivalent load (N)} \\ f_i & = \mbox{service factor (see tab. 5)} \\ f_c & = \mbox{contact factor (see tab. 6)} \\ f_h & = \mbox{stroke factor (see fig. 13)} \end{array}$$

$$P = P_{fy} + (\frac{P_{fz}}{F_z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 13

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f_i


f,	
No shocks or vibrations, smooth and low-frequency changes in direction; clean operating conditions; low speeds (<1 m/s) $$	1 - 1.5
Slight vibrations; medium speeds; (1-2,5 m/s) and medium-high frequency of the changes in direction	1.5 - 2
Shocks and vibrations; high speeds (>2.5 m/s) and high-frequency changes in direction; high contamination	2 - 3.5
	Tab. 5

Contact factor f

Stroke factor f_h

The stroke factor f_h accounts for the higher stress on the raceways and rollers when short strokes are carried out at the same total run distance. The following diagram shows the corresponding values (for strokes above 1 m, f_h remains 1):

Determination of the motor torque

The torque C_m required at the drive head of the linear axis is calculated by the following formula:

$$C_m = C_v + (F \cdot \frac{D_p}{2})$$

- C_m = torque of the motor (Nm)
- C_v = starting torque (Nm)
- F = force acting on the toothed belt (N)
- D_n = pitch diameter of pulley (m)

Warnings and legal notes

Before incorporating the partly completed machinery, we recommend consulting this chapter carefully, in addition to the assembly manual supplied with the individual modules. The information contained in this chapter and in the manuals for the individual modules, is provided by highly qualified and certified personnel, possessing adequate competence in incorporating the partly completed machinery.

Precaution in installation and handling operations. Significantly heavy equipment.

When handling the axis or system of axes, always make sure that the support or anchoring surfaces do not leave room for bending.

In order to stabilize the axis or system of axes, before handling it is mandatory to securely block the mobile parts. When moving axes with vertical translation (Z AXES) or combination systems (horizontal X and/or more than one vertical Z), it is mandatory to use the vertical movement to put all of the axes at the corresponding lower limit switch.

Do not overload. Do not subject to torsion stress.

Do not leave exposed to atmospheric agents.

Before mounting the motor on the gearbox, it is advisable to perform a pre-test of the motor itself, without connection to the gear unit. The testing of this component was not carried out by the manufacturer of the machine. It will therefore be the responsibility of the customer of Rollon to perform the testing of the same, in order to verify its correct operation.

The manufacturer cannot be considered responsible for any consequences derived from improper use or any use other than the purpose the axis or system of axes was designed for, or derived from failure to comply, during incorporation phases, with the rules of Good Technique and with what is indicated in this manual.

Avoid damage. Do not operate with inadequate tools

Warning: moving parts. Do not leave objectson the axis

Special installations: check the depth of the threads on moving elements

Make sure that the system has been installed on a level floor surface.

In use, accurately comply with the specific performance values declared in the catalog or, in particular cases, the load and dynamic performance characteristics requested in the phase prior to design.

For modules or parts of modular systems with vertical movement (Z axis), it is mandatory to mount self-braking motors to neutralize the risk of the axis dropping.

The images in this manual are to be considered merely an indication and not binding; therefore, the supply received could be different from the images contained in this manual, and Rollon S.p.A has deemed it useful to insert only one example.

Systems supplied by Rollon S.p.A. were not designed/envisaged to operate in ATEX environments.

Residual risks

- Mechanical risks due to the presence of moving elements (X, Y axes).
- Risk of fire resulting from the flammability of the belts used on the axes, for temperatures in excess of 250 °C in contact with the flame.
- The risk of the Z axis dropping during handling and installation operations on the partly completed machinery, before commissioning.
- Risk of the Z axis dropping during maintenance operations in the case

Basic components

of a drop in the electrical power supply voltage.

- Crushing hazard near moving parts with divergent and convergent motion.
- Shearing hazard near moving parts with divergent and convergent motion.
- Cutting and abrasion hazards.

The Partly Completed Machinery shown in this catalog is to be considered a mere supply of simple Cartesian axes and their accessories agreed when the contract is stipulated with the client. The following are therefore to be considered excluded from the contract:

- 1. Assembly on the client's premises (direct or final)
- 2. Commissioning on the client's premises (direct or final)
- 3. Testing on the client's premises (direct or final)

It is therefore understood that the aforementioned operations in points 1.,2., and 3. are not chargeable to Rollon.

Instructions of an environmental nature

Rollon operates with respect for the envirorment, in order to limit environmental impact. The following is a list of some instructions of an environmental nature for correct management of our supplies. Our products are mainly composed of:

Material	Details of the supply
Alluminum alloys	Profiles, pleates, various details
Steel with various composition	Screws, racks and pinions, and rails
Plastic	PA6 – Chains PVC – Covers and sliding block scrapers
Rubber of various types	Plugs, seals
Lubrification of various types	Used for the lubrication of sliding rails and bearings
Rust proof protectione	Rust proof protection oil
Wood, polyethylene, cardboard	Transport packaging

At the end of the product's life cycle, it is therfore possible to recover the various elements, in compliance with current regulations on waste issues.

Rollon is the supplier of Partly Completed Machinery, the (direct or final) client is responsible for testing and safely checking all equipment which, by definition, cannot be theoretically tested or checked at our facilities where the only movement possible is manual movement (for example: motors or reduction gears, cartesian axes movements that are not manually operated, safety brakes, stopper cylinders, mechanical or induction sensors, decelerators, mechanical limit switches, pneumatic cylinders, etc.). The partly completed machine must not be commissioned until the final machine, in which it is to be incorporated, has been declared compliant, if necessary, with the instructions in Machinery Directive 2006/42/CE.

Safety warnings for handling and transport

- The manufacturer has paid the utmost attention to packaging to minimize risks related to shipping, handling and transport.
- Transport can be facilitated by shipping certain components dismantled and appropriately protected and packaged.
- Handling (loading and unloading) must be carried out in compliance with information directly provided on the machine, on the packing and in the user manuals.
- Personnel authorized to lift and handle the machine and its components shall possess acquired and acknowledged skills and experience in the specific sector, besides having full control of the lifting devices used.
- During transport and/or storage, temperature shall remain within the allowed limits to avoid irreversible damage to electric and electronic components.
- Handling and transport must be carried out with vehicles presenting adequate loading capacity, and the machines shall be anchored to the established points indicated on the axes.
- DO NOT attempt to bypass handling methods and the established lifting points in any way.
- During handling and if required by the conditions, make use of one or more assistants to receive adequate warnings.
- If the machine has to be moved with vehicles, ensure that they are adequate for the purpose, and perform loading and unloading without risks for the operator and for people directly involved in the process.
- Before transferring the device onto the vehicle, ensure that both the machine and its components are adequately secured, and that their profile does not exceed the maximum bulk allowed. Place the necessary warning signs, if necessary.
- DO NOT perform handling with an inadequate visual field and when there are obstacles along the route to the final location.
- DO NOT allow people to either transit or linger within the range of action when lifting and handling loads.
- Download the axes just near the established location and store them in an environment protected against atmospheric agents.
- Failure to comply with the information provided might entail risks for the safety and health of people, and can cause economic loss.
- The Installation Manager must have the project to organize and monitor all operative phases.
- The Installation Manager shall ensure that the lifting devices and equipment defined during the contract phase are available.
- The Manager of the established location and the Installation Manager shall implement a "safety plan" in compliance with the legislation in force for the workplace.
- The "safety plan" shall take into account all surrounding work-related

activities and the perimeter spaces indicated in the project for the es tablished location.

- Mark and delimit the established location to prevent unauthorized personnel from accessing the installation area.
- The installation site must have adequate environmental conditions (lighting, ventilation, etc.).
- Installation site temperature must be within the maximum and minimum range allowed.
- Ensure that the installation site is protected against atmospheric agents, does not contain corrosive substances and is free of the risk of explosion and/or fire.
- Installation in environments presenting a risk of explosion and/or of fire must ONLY be carried out if the machine has been DECLARED COMPLIANT for such use.
- Check that the established location has been correctly fitted out, as defined during the contract phase and based on indications in the relative project.
- The established location must be fitted out in advance to carry out complete installation in compliance with the defined methods and schedule.

Note

- Evaluate in advance whether the machine must interact with other production units, and that integration can be implemented correctly, in compliance with standards and without risks.
- The manager shall assign installation and assembly interventions ONLY to authorized technicians with acknowledged know-how.
- State of the art connections to power sources (electric, pneumatic, etc.) must be ensured, in compliance with relevant regulatory and legislative requirements.
- "State of the art" connection, alignment and leveling are essential to avoid additional interventions and to ensure correct machine function.
- Upon completion of the connections, run a general check to ascertain that all interventions have been correctly carried out and compliance with requirements.
- Failure to comply with the information provided might entail risks for the safety and health of people, and can cause economic loss.

Transport

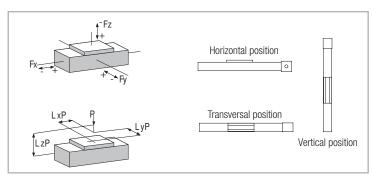
- Transport, also based on the final destination, can be done with different vehicles.
- Perform transport with suitable devices that have adequate loading capacity.
- Ensure that the machine and its components are adequately anchored to the vehicle.

Handling and lifting

- Correctly connect the lifting devices to the established points on the packages and/or on the dismantled parts.
- Before handling, read the instructions, especially safety instructions, provided in the installation manual, on the packages and/or on the dismantled parts.
- DO NOT attempt, in any way, to bypass handling methods and the established lifting, moving and handling points of each package and/or dismantled part.
- Slowly lift the package to the minimum necessary height and move it with the utmost caution to avoid dangerous oscillations.
- DO NOT perform handling with an inadequate visual field and when there are obstacles along the route to reach the final location.
- DO NOT allow people to either transit or linger within the range of action when lifting and handling loads.
- Do not stack packages to avoid damaging them, and reduce the risk of sudden and dangerous movements.
- In case of prolonged storage, regularly ensure that there are no variations in the storage conditions of the packages.

Check axis integrity after shipment

Every shipment is accompanied by a document ("Packing list") with the list and description of the axes.


- Upon receipt check that the material received corresponds to specifications in the delivery note.
- Check that packaging is perfectly intact and, for shipments without packaging, check that each axis is intact.
- In case of damages or missing parts, contact the manufacturer to define the relevant procedures.

Data sheet // 🗸

General data:	Date: Inquiry N°:
Address:	Contact:
Company:	Zip Code:
Phone:	Fax:
E-Mail:	

Technical data:

				X axis	Y axis	Z axis
Useful stroke (Including safety overtravel)		S	[mm]			
Load to be translated		Р	[kg]			
Location of Load in the	X-Direction	LxP	[mm]			
	Y-Direction	LyP	[mm]			
	Z-Direction	LzP	[mm]			
Additional force	Direction (+/-)	Fx (Fy, Fz)	[N]			
Position of force	X-Direction	Lx Fx (Fy, Fz)	[mm]			
	Y-Direction	Ly Fx (Fy, Fz)	[mm]			
	Z-Direction	Lz Fx (Fy, Fz)	[mm]			
Assembly position (Horizontal/Vertical/Transversal						
Max. speed		V	[m/s]			
Max. acceleration		а	[m/s ²]			
Positioning repeatability		∆s	[mm]			
Required life		L	yrs			

Attention: Please enclose drawing, sketches and sheet of the duty cycle

Distributors for Australia & New Zealand MOTION TECHNOLOGIES PTY LIMITED

sales@motiontech.com.au www.motiontech.com.au

© 13/07/2023

Consult the other ranges of products

All addresses of our global sales partners can also be found at www.rollon.com

The content of this document and its use are subject to the general terms of sale of ROLLON available on the web site www.rollon.com Changes and errors expected. The text and images may be used only with our permission.