Dual Motion
Size 14 Linear/Rotary Actuators
Axially move components to their insertion positions and then rotate them.
Based on unique, patented designs and incorporate proven motor technology. Units simplify product development by replacing what would otherwise be far more bulky and complex mechanisms.
Another feature of this design is to provide an electric motor in which linear and rotary motions are controllable independently of one another.

For a rotary/linear motor, it is desirable that the linear and rotary motions be controllable independently of one another. These devices can be run using a standard two axis stepper motor driver. Performance can be enhanced using chopper and/or microstepping drives.
Encoders available. US Digital E5 for linear, E6 for rotary.

Linear Travel / Step		Load Limit		Order Code I.D.
inches	mm	lbs	N	
0.00006	0.0015**	10	44.4	U
0.000098^{*}	0.0025	10	44.4	AA
0.00012	0.0030^{*}	15	67	N
0.00019*	0.005	15	67	AB
0.00024	$0.0061 *$	15	67	K
0.00039*	0.01	15	67	AC
0.00048	0.0121^{*}	15	67	J
$0.00078{ }^{*}$	0.02	15	67	AD
0.00157^{*}	0.04	15	67	AE

35000 Series: $0.9{ }^{\circ}$ Step Angle				
Linear Travel / Step		Load Limit		Order Code I.D.
inches	mm	lbs	N	
0.00003	0.00076^{*}	10	44.4	BP
0.00005*	0.00125	10	44.4	AY
0.00006	0.0015^{*}	15	67	U
0.000098*	0.0025	15	67	AA
0.00012	0.0030^{*}	15	67	N
0.00019*	0.005	15	67	AB
0.00024	0.0061^{*}	15	67	K
0.00039*	0.01	15	67	AC
0.00079*	0.02	15	67	AD

VValues tuncated. Standard motors are Class Brated for maximum temperature of $130^{\circ} \mathrm{C}$.

LR	35	H	H	4		J	05	910
Prefix LR= Linear/Rotary	Series Number Designation $35=35000$	$\begin{gathered} \text { Rotary Step } \\ \text { Angle } \\ \mathbf{H}=1.8^{\circ} \\ \mathbf{K}=0.9^{\circ} \\ \mathbf{M}=1.8^{\circ} \\ \text { Double } \\ \text { Stack } \\ \mathbf{P}=0.9^{\circ} \\ \text { Double } \\ \text { Stack } \end{gathered}$	$\begin{gathered} \text { Linear } \\ \text { Step } \\ \text { Angle } \\ \mathrm{H}=1.8^{\circ} \\ \mathrm{K}=0.9^{\circ} \end{gathered}$	$\begin{gathered} \text { Coils } \\ 4= \\ \text { Bipolar } \\ \text { (4 wire) } \\ 6= \\ \text { Unipolar } \\ (6 \text { wire) } \end{gathered}$		0.9° Step Angle Code ID Resolution Travel/Step $\mathrm{BP}=.00003$-in $(.00076)$ $\mathrm{AY}=.00005-\mathrm{in}(.00125)$ $\mathrm{U}=.00006-\mathrm{in}(.0015)$ $\mathrm{AA}=.000098-$-in $(.0025)$ N$=.00012-\mathrm{in}(.0030)$	Voltage $05=$ 5 VDC $12=$ 12 VDC $\mathrm{SP}=$ Mixed Votages Custom avalade	Suffix Stroke Example: $-910=1-\mathrm{in}$ $(26 \mathrm{~mm})$ $-\mathrm{XXX}=$ Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

wWW.motiontech.com.au

Dual Motion
Size 17 Linear/Rotary Actuators

Provide linear and rotary motions, controllable independently of one another
For a rotary/linear motor, it is desirable that the linear and rotary motions be controllable independenty of one another. These devices can be run using a standard two axis stepper motor driver. Performance can be enhanced using chopper and/or microstepping drives.

The actuators are based on unique, patented designs and incorporate proven motor technology. These units simplify product development by replacing wh would otherwise be far more bulky and complex mechanisms.

Encoders available. US Digital E5 for linear, E6 for rotary.

Stroke	Dim. "A"	Suffix $\#$	M4x0.7 Thread
$0.500(12.7)$	$3.9(99.3)$	-905	-805
$1.00(25.4)$	$4.409(112.0)$	-910	-810
$2.00(50.8)$	$5.409(137.4)$	-920	-820
$4.00(101.6)$	$7.409(188.2)$	-925	-825

Standard strokes available:

NOTE:All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.
Ramping can increase the performance ofa motor either by increasing the top speed or geting a heavier load accelerated up to speed faster. Also, decceleation can be
Lsed to topo the motor without vereshoot.
With L R drives peak force and speeds are reduced, using a unipolar drive will yeld a further 30% force reeuccion.

Identifying the Series 43000 Series Dual Motion Part Number Codes when Ordering

Identifying the Series 43000 Series Dual Motion Part Number Codes when Ordering								
LR	43	H	H	4		J	05	910
Prefix $L R=$ Linear/Rotary	$\begin{gathered} \text { Series } \\ \text { Number } \\ \text { Designation } \\ 43=43000 \end{gathered}$	$\begin{gathered} \text { Rotary Step } \\ \text { Angle } \\ \mathrm{H}=1.8^{\circ} \\ \mathrm{K}=0.9^{\circ} \\ \mathrm{M}=1.8^{\circ} \\ \text { Double } \\ \text { Stack } \\ \mathrm{P}=0.9^{\circ} \\ \text { Double } \\ \text { Stack } \end{gathered}$	$\begin{gathered} \text { Linear } \\ \text { Step } \\ \text { Angle } \\ \mathrm{H}=1.8^{\circ} \\ \mathrm{K}=0.9^{\circ} \end{gathered}$	$\begin{gathered} \text { Coils } \\ 4= \\ \text { Bipolar } \\ \text { (4wire) } \\ 6= \\ 6= \\ \text { Unipolar } \\ (6 \text { wire) } \end{gathered}$			Voltage $05=$ 5 VDC $12=$ 12 VDC SP $=$ Mixed Voltages Custom V avaiable	Suffix Stroke Example: -910 $=1$-in (26 mm) $-x X X=$ Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

43000 Series: $1.8{ }^{\circ}$ Step Angle				
Linear Travel / Step		Load Limit		Order Code I.D.
inches	mm	lbs	N	
0.00012	0.003^{*}	30	133	N
0.000125	$0.0031 *$	30	133	7
0.00015625	0.0039*	30	133	P
0.00019*	0.005	30	133	AB
0.00024	0.0060*	30	133	K
0.00025	0.0063^{*}	30	133	9
0.0003125	0.0079*	50	222	A
0.00039*	0.01	50	222	AC
0.00048	0.0121^{*}	50	222	J
0.0005	0.0127^{*}	50	222	3
0.000625	0.0158^{*}	50	222	B
$0.00098{ }^{*}$	0.025	50	222	AQ
0.00096	0.0243^{*}	50	222	Q
0.00125	0.0317^{*}	50	222	c
0.00196*	0.05	50	222	BH
0.00192	0.0487^{*}	50	222	R
0.0025	0.0635	50	222	Y
0.00375	0.0953*	50	222	AG
0.005	0.127	50	222	Z

43000 Series: 0.9° Step Angle				
Linear Travel / Step		Load Limit		Order Code I.D.
inches	mm	lbs	N	
0.00006	0.0015*	30	133	U
0.0000625	0.0016^{*}	30	133	BB
0.00007825	0.00198*	30	133	V
0.000098*	0.0025	30	133	AA
0.00012	0.003^{*}	30	133	N
0.000125	0.0031^{*}	30	133	7
0.00015625	0.0039^{*}	50	222	P
0.00019*	0.005	50	222	AB
0.00024	0.0060^{*}	50	222	K
0.00025	0.0063^{*}	50	222	9
0.0003125	0.0079*	50	222	A
0.00049*	0.0125	50	222	BG
0.00048	0.0121^{*}	50	222	J
0.000625	0.0158^{*}	50	222	B
$0.00098 *$	0.025	50	222	AQ
0.00096	0.0243^{*}	50	222	Q
0.00125	0.0317^{*}	50	222	c
0.001875	0.0476^{*}	50	222	AF
0.0025	0.0635	50	222	Y

*Values tuncated. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}$.

Dimensions $=(m m)$ inches

Stroke	Dim. "A"	Suffif	M4x0.7Trread
$0.500(12.7)$	$3.9(99.3)$	-905	-805
$1.00(25.4)$	$4.409(112.0)$	-910	-810
$2.00(55.8)$	$5.409(137.4)$	-920	-820
$4.00(101.6)$	$7.409(188.2)$	-925	-825

FORCE vs. LINEAR VELOCITY

- Chopper
- Bipolar
- 100\% Duty Cycle
- 8:1 Motor Coil to Drive Supply Voltage

[^0]Ramping can increase the pefformance of a motor e ither by increasing the top speed or geting a heavier load accelerated up to speed faster. Also,
deceieration can bea used tostop the motr wito tovershoot With LR drives peak force and speeds are reduced, ssing a unipolar drive will yield a turther 30% force reduction.

[^0]: IOTE:All chopper drive curves were created with a 5 volt motor and 40 volt power suply

