

Clean Room System

www.motiontech.com.au

TO SUPPORT YOU, WE DESIGN AND PRODUCE

An industrialized process with various levels of customization

COLLABORATION

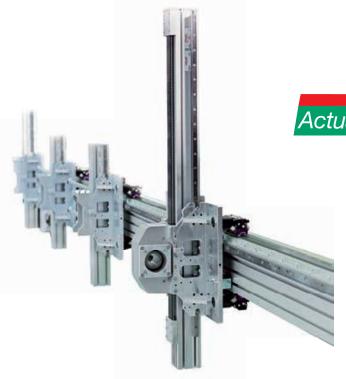
High-level technical consulting and cross-competence allow us to identify the needs of our clients and transform them into guidelines for continuous exchange, whileour strong specialization in the different industrial sectors becomes an factor in developing projects and innovative applications.

Rollon takes on the task of design and development of linear motion solutions, taking care of everything for our customers, so that they can concentrate on their core business. We offer everything from individual components to specifically designed, mechanically integrated systems: the quality of our applications is an expression of our technology and competence.

SOLUTIONS APPLICATIONS

DIVERSIFIED LINEAR SOLUTIONS FOR EVERY APPLICATION REQUIREMENT

Linear and telescopic rails



Linear actuators and automation systems

Actuator Line

Linear actuators with different rail configurations and transmissions, available with belt, screw, or rack and pinion drives for different needs in terms of precision and speed. Rails with bearings or ball recycle systems for different load capacities and critical environments.

Actuator System Line

Integrated actuators for industrial automation, used in applications in several industrial sectors: automated industrial machinery, precision assembly lines, packaging lines and high speed production lines. The Actuator Line evolves to satisfy the requests of our most discerning clients.

Clean Room System

1 ONE series

ONE series description	CRS-2
The components	CRS-3
The linear motion system	CRS-4
ONE 50	CRS-5
ONE 65	CRS-6
ONE 80	CRS-7
ONE 110	CRS-8
Planetary gear	CRS-9
Accessories	CRS-10
Ordering key	CRS-12

ONE series

ONE series description

Fig. 1

The ONE series actuators are belt driven linear actuators specifically designed for Clean Room applications.

The ONE series reduces particle contamination using a specially designed straight seal that isolates the internals of the actuator from the environment. In addition to particle containment, the ONE series can support a vacuum pump (up to 0,8 bar) to remove and transport contaminates from the interior of the actuator to filtration sites. The 2 vacuum ports are located on the drive and idle head.

All internal components of the ONE series actuators are designed to minimize particle release. Component materials are limited to stainless steel. Where stainless steel is not an option, special treatments are used to ensure low particle release.

Special lubrications designed for use in cleanroom environments are used for all bearings and linear rails.

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon ONE series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. Aluminum alloy 6060 is used (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Driving belt

We are using selected higth quality polyurethane timing belts, AT profile, manufactured by leading companies in this field.

Carriage

The carriage of the Rollon ONE series linear units are made entirely of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through the carriage.

Sealing strip

Rollon ONE series linear units are equipped with a polyurethane sealing strip to prevent particles generated inside the unit to go outside. The sealing strip runs the length of the body and is kept in position by micro-bearings located with in the carriage. This minimizes frictional resistance as the strip passes through the carriage while providing maximum protection.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg —— dm³	kN — mm²	10 ⁻⁶ 	 	J 	Ω . m . 10^{-9}	°C
2.7	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

Tab. 3

The linear motion system

Vacuum system

The ONE series actuator has specific connection ports on the drive and the idle end of the unit to connect a vacuum system. The vacuum quality must be evaluated case by case, but Rollon has had success with 0,8 bar on a ONE 80 with a stroke of 1.000 mm up to 4.000 mm.

Selected mechanical components

ONE Series is assembled with select high-quality components.

Only Stainless Steel (AISI 303, AISI 440C) is used for bearings, linear guides, shafts, pulleys, and other metallic components. Where it is impossible to use Stainless Steel, Rollon provides a special treatment tested under severe conditions and under particle generation.

Lubrication

ONE Series is equiped with "innovate and hi-tech linear guides" that feature special ball cages to maintain spacing. This feature supports a longterm maintenance and a low particle generation if combined with special lubricant, specifically developed and adopted for Clean Room applications.

Range

ONE Series is now available in 3 different sizes, for multi axes combina-

- ONE 50
- ONE 65
- ONE 80
- ONE 110

Maximum stroke is 6.000 mm, except ONE 50 where the maximum stroke is 3.700 mm.

For technical details and load capacities, please refer to next pages.

ONE SP section

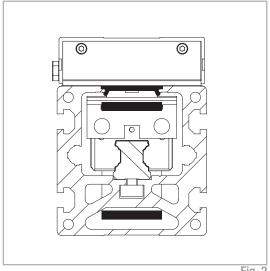
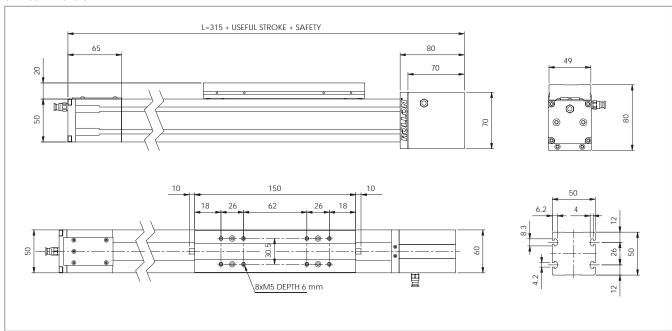



Fig. 2

ONE 50 Dimension

For further details please visit our website www.rollon.com and download the related DXF files.

Fig. 3

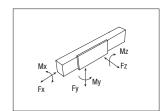
Technical data

	Туре
	ONE 50
Max. useful stroke length [mm]	3700
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4
Max. acceleration [m/s²]	50
Type of belt	22 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36,61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	0.4
Zero travel weight [kg]	1.8
Weight for 100 mm useful stroke [kg]	0.4
Starting torque [Nm]	0.4
Moment of inertia of pulleys [g mm²]	19810
Rail size [mm]	12 mini
*1) Positioning repeatability is dependant on the type of transmission used	Tab. 4

^{*1)} Positioning repeatability is dependant on the type of transmission used

Moments of inertia of the aluminum body

Туре	I _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]
ONE 50	0.025	0.031	0.056

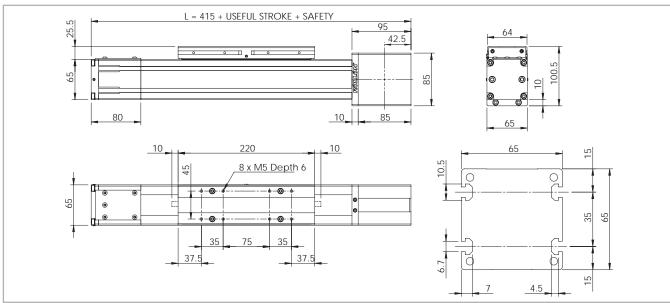

Tab. 5

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ONE 50	22 AT 5	22	0.072
			Tab. 6

Belt length (mm) = $2 \times L - 130$


Load capacity

Туре	F F [N] [N]		: V V]	F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 50	809	508	7060	6350	7060	46.2	233	233

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 7

ONE 65 Dimension

For further details please visit our website www.rollon.com and download the related DXF files.

Fig. 4

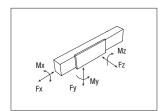
Technical data

	Туре
	1,700
	ONE 65
Max. useful stroke length [mm]	6000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 5
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	1.1
Zero travel weight [kg]	3.5
Weight for 100 mm useful stroke [kg]	0.6
Starting torque [Nm]	1.5
Moment of inertia of pulleys [g mm²]	117200
Rail size [mm]	15

 $^{^{\}star}$ 1) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm⁴]
ONE 65	0.060	0.086	0.146
			Tab. 9


Driving belt

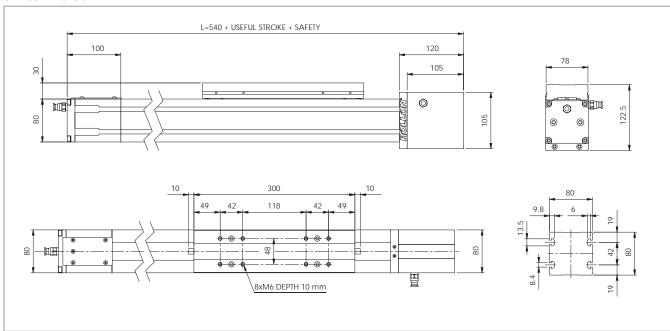
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight	
	belt	[mm]	[kg/m]	
ONE 65	32 AT 5	32	0.105	

Tab. 10

Belt length (mm) = $2 \times L - 180$

Load capacity


Туре	F [N	F, F, [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 65	1344	883	48400	22541	48400	320	1376	1376

Tab. 8

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 11

ONE 80 Dimension

For further details please visit our website www.rollon.com and download the related DXF files.

Fig. 5

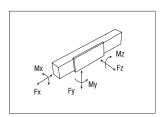
Technical data

	Туре
	ONE 80
Max. useful stroke length [mm]	6000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5
Max. acceleration [m/s²]	50
Type of belt	32 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.48
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	2.7
Zero travel weight [kg]	10.5
Weight for 100 mm useful stroke [kg]	1
Starting torque [Nm]	2.2
Moment of inertia of pulleys [g mm²]	388075
Rail size [mm]	20
*1) Positioning repeatability is dependant on the type of transmission used	Tab. 12

Moments of inertia of the aluminum body

Туре	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
ONE 80	0.136	0.195	0.331

Tab. 13

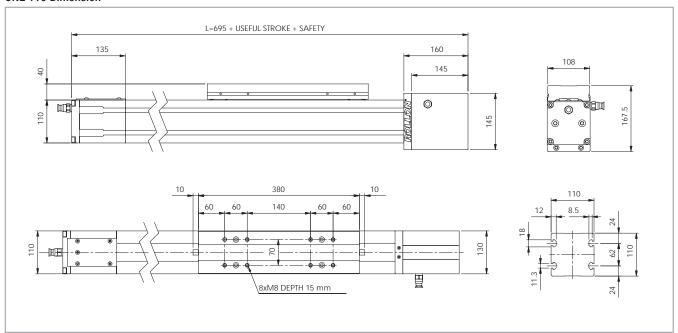

Tab. 14

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	[kg/m]
ONE 80	32 AT 10	32	0.185

Belt length (mm) = $2 \times L - 230$


Load capacity

Туре	F [1	: × V]	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 80	2258	1306	76800	35399	76800	722	5606	5606

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 15

ONE 110 Dimension

For further details please visit our website www.rollon.com and download the related DXF files.

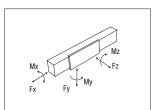
Fig. 6

Technical data

	Туре
	ONE 110
Max. useful stroke length [mm]	6000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5
Max. acceleration [m/s²]	50
Type of belt	50 AT 10
Type of pulley	Z 27
Pulley pitch diameter [mm]	85.94
Carriage displacement per pulley turn [mm]	270
Carriage weight [kg]	5.6
Zero travel weight [kg]	22.5
Weight for 100 mm useful stroke [kg]	1.4
Starting torque [Nm]	3.5
Moment of inertia of pulleys [g mm²]	$2.193 \cdot 10^{6}$
Rail size [mm]	25

^{*1)} Positioning repeatability is dependant on the type of transmission used

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
ONE 110	0.446	0.609	1.054
			Tab. 17

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ONE 110	50 AT 10	50	0.290
			Tab. 18

Belt length (mm) = $2 \times L - 290$

Load capacity

Туре	F [N	: X V]	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 110	4980	3300	104800	50321	104800	1126	10532	10532

Tab. 16

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 19

Planetary gears

Assembly to the right or to the left of the driving head

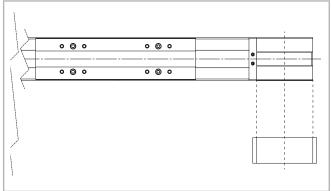
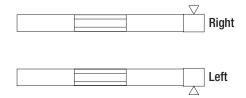



Fig. 7

The series ONE linear units can be fitted with several different drive systems. In each case, the driving pulley is attached to the reduction gearshaft by means of a tapered coupling to ensure high accuracy over a long period of time.

Versions with planetary gears

Planetary gears are used for highly dynamic robot, automation and handling applications involving stressing cycles and with high level precision requirements. Standard models are available with clearance from 3' to 15' and with a reduction ratio from 1:3 to 1:1000. For assembly of non-standard planetary gear, contact our offices.

Shaft with centering

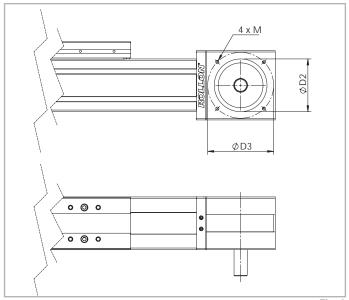
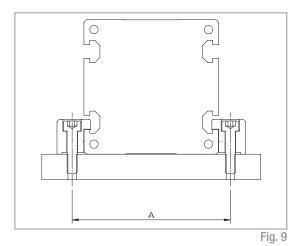


Fig. 8

Unit	Shaft type	D2	D3	М	Head code AS left	Head code AS right
ONE 50	AS 12	55	70	M5	VB	VA
ONE 65	AS 15	60	85	M6	VB	VA
ONE 80	AS 20	80	100	M6	VB	VA
ONE 110	AS 25	110	130/160	M8	VB	VA

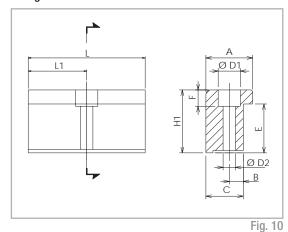

Tab. 20

Accessories

Fixing by brackets

The linear motion systems used for the Rollon series ONE linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the units, we recommend the use of the dedicated T-Slots in the extruded bodies as shown below.


Unit	A (mm)
ONE 50	62
ONE 65	77
ONE 80	94
ONE 110	130
	Tah 21

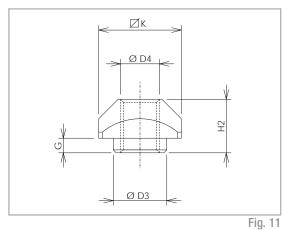
Tab. 21

Warning:

Do not fix the linear units through the drive ends.

Fixing brackets

Dimensions (mm)


Unit	А	H1	В	С	Е	F	D1	D2	L	Lt	Code
ONE 50	20	14	6	16	10	6	10	5.5	35	17.5	1000958
ONE 65	20	17.5	6	16	11.5	6	9.4	5.3	50	25	1001490
ONE 80	20	20.7	7	16	14.7	7	11	6.4	50	25	1001491
ONE 110	36.5	28.5	10	31	18.5	11.5	16.5	10.5	100	50	1001233

Tab. 22

Fixing bracket

Anodized aluminum block for fixing the linear units through the side T-Slots of the body.

T-Nuts

Dimensions (mm)

Unit	D3	D4	G	H2	К	Code
ONE 50	-	M4	-	3.4	8	1001046
ONE 65	6.7	M5	2.3	6.5	10	1000627
ONE 80	8	M6	3.3	8.3	13	1000043
ONE 110	11	M8	2.8	10.8	17	1000932

Tab. 23

T-nuts

Steel nuts to be used in the slots of the body.

Proximity

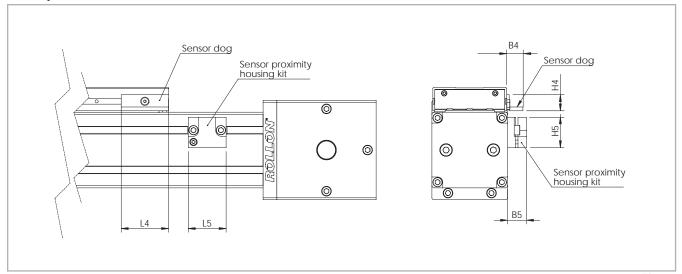


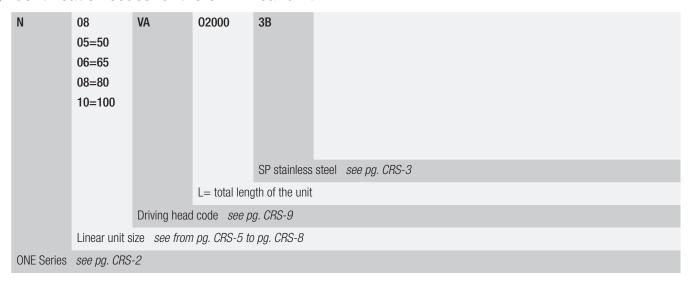
Fig. 12

Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing onto the profile.

Sensor dog

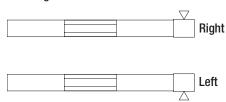
L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

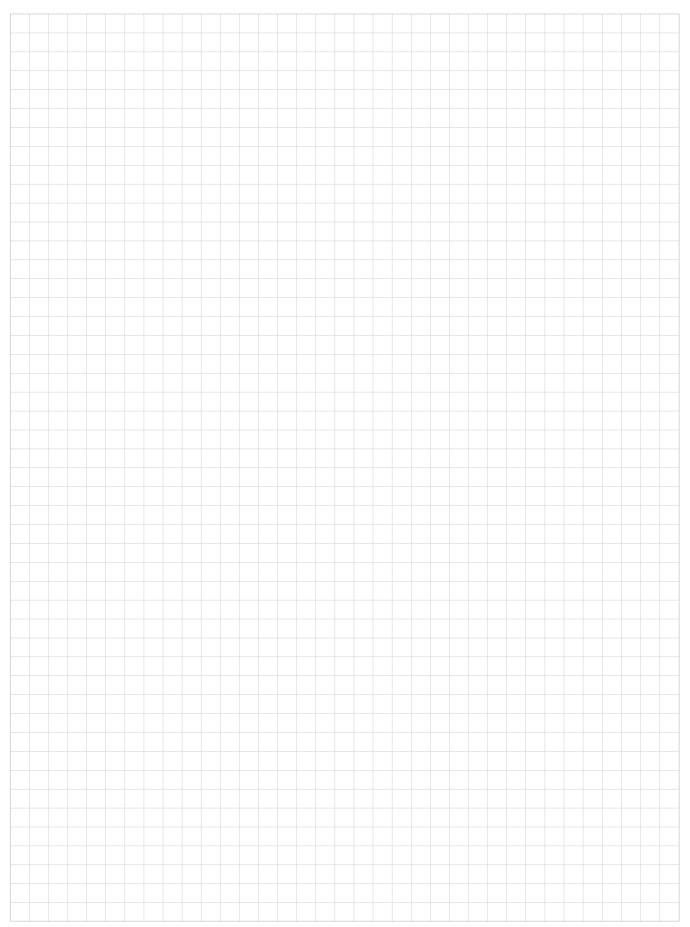

Dimensions (mm)

Unit	B4	В5	L4	L5	H4	Н5	For proximity	Sensor dog code	Sensor proximity housing kit code
ONE 50	9.5	14	25	29	11.9	22.5	08	G000268	G000211
ONE 65	17.2	20	50	40	17	32	Ø 12	G000267	G000212
ONE 80	17.2	20	50	40	17	32	Ø 12	G000267	G000209
ONE 110	17.2	20	50	40	17	32	Ø 12	G000267	G000210

Tab. 24

Ordering key // V


Identification codes for the ONE linear unit


In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

Notes / ~

Static load and service life

Static load

In the static load test, the radial load rating F_{v} , the axial load rating F_{z} , and the moments M_x , M_v und $M_{_{\! 7}}$ indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor $S_{\scriptscriptstyle 0}$ is used, which accounts for the special conditions of the application defined in more detail in the table below:

All load capacity values refer to the actuator well fixed to a rigid structure. For cantilever applications the deflection of the actuator profile must be taken in account.

Safety factor S_o

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	2 - 3
Normal assembly conditions	3 - 5
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	5 - 7

Fig. 1

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_o.

$$\frac{P_{fy}}{F_v} \leq \frac{1}{S_0} \qquad \frac{P_{fz}}{F_z} \leq \frac{1}{S_0}$$

$$\frac{P_{fz}}{F_z} \le \frac{1}{S_0}$$

$$\frac{M_1}{M_x} \le \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \le \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Fig. 2

The above formulae only apply to a one load case. If one or more of the forces described are acting simultaneously, the following calculation must be carried out:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}}$$

= acting load (y direction) (N)

= static load rating (y direction) (N)

= acting load (z direction) (N)

= static load rating (z direction) (N)

 M_1 , M_2 , M_3 = external moments (Nm)

 M_{v} , M_{v} , M_{v} = maximum allowed moments in the different load directions (Nm)

The safety factor S_o can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

Belt safety factor referred to the dynamic F_x

Impact and Speed / Orietation Safety vibrations acceleration **Factor** horizontal 1.4 No impacts Low and/or vibrations 1.8 vertical 1.7 Light impacts horizontal Medium and/or vibrations 2.2 vertical 2.2 Strong impacts horizontal High and/or vibrations vertical

Tab. 1

Fig. 3

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km.

The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$L_{km} = \text{theoretical service life (km)}$$

$$Fz-dyn = \text{dynamic load rating (N)}$$

$$P_{eq} = \text{acting equivalent load (N)}$$

$$f_i = \text{service factor (see tab. 2)}$$

Fig. 4

The effective equivalent load $P_{\rm eq}$ is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

For SP types

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_{_1}}{M_{_X}} + \frac{M_{_2}}{M_{_y}} + \frac{M_{_3}}{M_{_z}}) \cdot F_{_y}$$

Fig. 5

For CI and CE types

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 6

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f

f_i	
no shocks or vibrations, smooth and low-frequency changes in direction; ($\alpha < 5 \text{m/s}^2$) clean operating conditions; low speeds (<1 m/s)	1.5 - 2
Slight vibrations; medium speeds; (1-2 m/s) and medium-high frequency of the changes in direction (5m/s² < α < 10 m/s²)	2 - 3
Shocks and vibrations; high speeds (>2 m/s) and high-frequency changes in direction; (α > 10m/s²) high contamination, very short stroke	> 3

Tab. 2

Speedy Rail A Lifetime

The rated lifetime for SRA actuators is 80,000 Km.

Static load and service life Uniline

Static load

In the static load test, the radial load rating F_y , the axial load rating F_z , and the moments M_x , M_y und M_z indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor S_0 is used, which accounts for the special conditions of the application defined in more detail in the table below:

Safety factor S_o

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	1 - 1.5
Normal assembly conditions	1.5 - 2
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	2 - 3.5

Fig. 7

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_n .

$$\frac{P_{fy}}{F_{v}} \leq \frac{1}{S_{0}}$$

$$\frac{P_{fz}}{F_z} \le \frac{1}{S_0}$$

$$\frac{M_1}{M_x} \leq \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \leq \frac{1}{S_0}$$

$$\begin{array}{ccc} \underline{M_3} & \leq & \underline{1} \\ \underline{M_z} & \leq & \underline{S_0} \end{array}$$

Fig. 8

The above formulae apply to a one load case. If one or more of the forces described are acting simultaneously, the following test must be carried out:

$$\frac{P_{fy}}{F_{v}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{v}} + \frac{M_{3}}{M_{z}} \leq \frac{1}{S_{0}}$$

 P_{fy} = acting load (y direction) (N)

= static load rating (y direction) (N)

 P_{fz} = acting load (z direction) (N)

 F_z = static load rating (z direction) (N)

 M_1 , M_2 , M_3 = external moments (Nm)

 M_x , M_y , M_z = maximum allowed moments

in the different load directions (Nm)

Fig. 9

The safety factor $S_{\scriptscriptstyle 0}$ can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

Calculation formulae

Moments $\mathbf{M}_{_{\mathbf{V}}}$ and $\mathbf{M}_{_{\mathbf{Z}}}$ for linear units with long slider plate

The allowed loads for the moments M_y and M_z depend on the length of the slider plate. The allowed moments M_{zn} and M_{yn} for each slider plate length are calculated by the following formulae:

$$S_n = S_{min} + n \cdot \Delta S$$

$$M_{zn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{z min}$$

$$M_{yn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{y min}$$

 M_{zn} = allowed moment (Nm)

 $M_{z min} = minimum values (Nm)$

 M_{vn} = allowed moment (Nm)

 $M_{y min} = minimum values (Nm)$

 S_n = length of the slider plate (mm)

 S_{min} = minimum length of the slider plate (mm)

 ΔS = factor of the change in slider length

K = constant

Fig. 10

Туре	M _{y min}	M _{z min}	S _{min}	ΔS	К
	[Nm]	[Nm]	[mm]		
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310		130
C75L	674	116	440	10	155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270

Tab. 3

Moments $\mathbf{M}_{\mathbf{v}}$ and $\mathbf{M}_{\mathbf{z}}$ for linear units with two slider plates

The allowed loads for the moments M_y and M_z are related to the value of the distance between the centers of the sliders. The allowed moments M_{yn} and M_{zn} for each distance between the centers of the sliders are calculated by the following formulae:

$$L_n = L_{min} + n \cdot \Delta L$$

$$M_{_{\boldsymbol{y}}}=(\frac{L_{_{\boldsymbol{n}}}}{L_{_{\boldsymbol{min}}}})\cdot M_{_{\boldsymbol{y}\,\boldsymbol{min}}}$$

$$M_z = (\frac{L_n}{L_{min}}) \cdot M_{z \, min}$$

 $M_v = allowed moment (Nm)$

 $M_z = allowed moment (Nm)$

 $M_{v min} = minimum values (Nm)$

 $M_{z min} = minimum values (Nm)$

 L_n = distance between the centers of the sliders (mm)

min minimum value for the distance between the centers of the sliders (mm)

 ΔL = factor of the change in slider length

Fig. 11

Туре	M _{y min}	M _{z min}	L _{min}	ΔL
	[Nm]	[Nm]	[mm]	
A40D	70	193	235	5
A55D	225	652	300	5
A75D	771	2288	416	8
C55D	492	90	300	5
C75D	1809	312	416	8
E55D	450	652	300	5
E75D	1543	2288	416	8
ED75D	3619	2288	416	8

Tab. 4

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km. The corresponding values for each liner unit are listed in Table 45 shown

below. The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^3$$

C = dynamic load rating (N)
P = acting equivalent load (N) f_i = service factor (see tab. 5) f_c = contact factor (see tab. 6) f_b = stroke factor (see fig. 13)

L_{km} = theoretical service life (km)

Fig. 12

The effective equivalent load P is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

$$P = P_{fy} + (\frac{P_{fz}}{F_Z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 13

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f_i

f_{i}	
No shocks or vibrations, smooth and low-frequency changes in direction; clean operating conditions; low speeds (<1 m/s)	1 - 1.5
Slight vibrations; medium speeds; (1-2,5 m/s) and medium-high frequency of the changes in direction	1.5 - 2
Shocks and vibrations; high speeds (>2.5 m/s) and high-frequency changes in direction; high contamination	2 - 3.5

Tab. 5

Contact factor f

f _c	
Standard slider	1
Long slider	0.8
Double slider	0.8

Tab. 6

Stroke factor f_h

The stroke factor f_h accounts for the higher stress on the raceways and rollers when short strokes are carried out at the same total run distance. The following diagram shows the corresponding values (for strokes above 1 m, f_h remains 1):

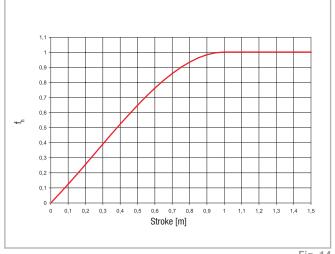


Fig. 14

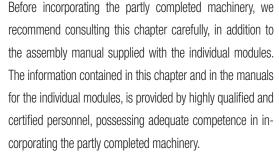
Determination of the motor torque

The torque ${\rm C_m}$ required at the drive head of the linear axis is calculated by the following formula:

$$C_m = C_v + (F \cdot \frac{D_p}{2})$$

 C_m = torque of the motor (Nm)

 C_{v} = starting torque (Nm)


F = force acting on the toothed belt (N)

D_n = pitch diameter of pulley (m)

Warnings and legal notes

The manufacturer cannot be considered responsible for any consequences derived from improper use or any use other than the purpose the axis or system of axes was designed for, or derived from failure to comply, during incorporation phases, with the rules of Good Technique and with what is indicated in this manual.

Precaution in installation and handling operations. Significantly heavy equipment.

Avoid damage. Do not operate with inadequate tools

When handling the axis or system of axes, always make sure that the support or anchoring surfaces do not leave room for bending.

Warning: moving parts. Do not leave objectson the axis

In order to stabilize the axis or system of axes, before handling it is mandatory to securely block the mobile parts. When moving axes with vertical translation (Z AXES) or combination systems (horizontal X and/or more than one vertical Z), it is mandatory to use the vertical movement to put all of the axes at the corresponding lower limit switch.

Special installations: check the depth of the threads on moving elements

Make sure that the system has been installed on a level floor surface.

Do not overload. Do not subject to torsion stress.

In use, accurately comply with the specific performance values declared in the catalog or, in particular cases, the load and dynamic performance characteristics requested in the phase prior to design.

Do not leave exposed to atmospheric agents.

For modules or parts of modular systems with vertical movement (Z axis), it is mandatory to mount self-braking motors to neutralize the risk of the axis dropping.

Before mounting the motor on the gearbox, it is advisable to perform a pre-test of the motor itself, without connection to the gear unit. The testing of this component was not carried out by the manufacturer of the machine. It will therefore be the responsibility of the customer of Rollon to perform the testing of the same, in order to verify its correct operation.

The images in this manual are to be considered merely an indication and not binding; therefore, the supply received could be different from the images contained in this manual, and Rollon S.p.A has deemed it useful to insert only one example.

Systems supplied by Rollon S.p.A. were not designed/envisaged to operate in ATEX environments.

Residual risks

- Mechanical risks due to the presence of moving elements (X, Y axes).
- Risk of fire resulting from the flammability of the belts used on the axes, for temperatures in excess of 250 °C in contact with the flame.
- The risk of the Z axis dropping during handling and installation operations on the partly completed machinery, before commissioning.
- Risk of the Z axis dropping during maintenance operations in the case

of a drop in the electrical power supply voltage.

- Crushing hazard near moving parts with divergent and convergent motion.
- Shearing hazard near moving parts with divergent and convergent motion.
- Cutting and abrasion hazards.

Basic components

The Partly Completed Machinery shown in this catalog is to be considered a mere supply of simple Cartesian axes and their accessories agreed when the contract is stipulated with the client. The following are therefore to be considered excluded from the contract:

- 1. Assembly on the client's premises (direct or final)
- 2. Commissioning on the client's premises (direct or final)
- 3. Testing on the client's premises (direct or final)
 It is therefore understood that the aforementioned operations in points 1.,2., and 3. are not chargeable to Rollon.

Rollon is the supplier of Partly Completed Machinery, the (direct or final) client is responsible for testing and safely checking all equipment which, by definition, cannot be theoretically tested or checked at our facilities where the only movement possible is manual movement (for example: motors or reduction gears, cartesian axes movements that are not manually operated, safety brakes, stopper cylinders, mechanical or induction sensors, decelerators, mechanical limit switches, pneumatic cylinders, etc.). The partly completed machine must not be commissioned until the final machine, in which it is to be incorporated, has been declared compliant, if necessary, with the instructions in Machinery Directive 2006/42/CE.

Instructions of an environmental nature

Rollon operates with respect for the environment, in order to limit environmental impact. The following is a list of some instructions of an environmental nature for correct management of our supplies. Our products are mainly composed of:

Material	Details of the supply
Alluminum alloys	Profiles, pleates, various details
Steel with various composition	Screws, racks and pinions, and rails
Plastic	PA6 – Chains PVC – Covers and sliding block scrapers
Rubber of various types	Plugs, seals
Lubrification of various types	Used for the lubrication of sliding rails and bearings
Rust proof protectione	Rust proof protection oil
Wood, polyethylene, cardboard	Transport packaging

At the end of the product's life cycle, it is therfore possible to recover the various elements, in compliance with current regulations on waste issues.

Safety warnings for handling and transport

- The manufacturer has paid the utmost attention to packaging to minimize risks related to shipping, handling and transport.
- Transport can be facilitated by shipping certain components dismantled and appropriately protected and packaged.
- Handling (loading and unloading) must be carried out in compliance with information directly provided on the machine, on the packing and in the user manuals.
- Personnel authorized to lift and handle the machine and its components shall possess acquired and acknowledged skills and experience in the specific sector, besides having full control of the lifting devices used.
- During transport and/or storage, temperature shall remain within the allowed limits to avoid irreversible damage to electric and electronic components.
- Handling and transport must be carried out with vehicles presenting adequate loading capacity, and the machines shall be anchored to the established points indicated on the axes.
- DO NOT attempt to bypass handling methods and the established lifting points in any way.
- During handling and if required by the conditions, make use of one or more assistants to receive adequate warnings.
- If the machine has to be moved with vehicles, ensure that they are adequate for the purpose, and perform loading and unloading without risks for the operator and for people directly involved in the process.
- Before transferring the device onto the vehicle, ensure that both the
 machine and its components are adequately secured, and that their
 profile does not exceed the maximum bulk allowed. Place the necessary
 warning signs, if necessary.
- DO NOT perform handling with an inadequate visual field and when there are obstacles along the route to the final location.
- DO NOT allow people to either transit or linger within the range of action when lifting and handling loads.
- Download the axes just near the established location and store them in an environment protected against atmospheric agents.
- Failure to comply with the information provided might entail risks for the safety and health of people, and can cause economic loss.
- The Installation Manager must have the project to organize and monitor all operative phases.
- The Installation Manager shall ensure that the lifting devices and equipment defined during the contract phase are available.
- The Manager of the established location and the Installation Manager shall implement a "safety plan" in compliance with the legislation in force for the workplace.
- The "safety plan" shall take into account all surrounding work-related

- activities and the perimeter spaces indicated in the project for the es tablished location.
- Mark and delimit the established location to prevent unauthorized personnel from accessing the installation area.
- The installation site must have adequate environmental conditions (lighting, ventilation, etc.).
- Installation site temperature must be within the maximum and minimum range allowed.
- Ensure that the installation site is protected against atmospheric agents, does not contain corrosive substances and is free of the risk of explosion and/or fire.
- Installation in environments presenting a risk of explosion and/or of fire
 must ONLY be carried out if the machine has been DECLARED
 COMPLIANT for such use.
- Check that the established location has been correctly fitted out, as defined during the contract phase and based on indications in the relative project.
- The established location must be fitted out in advance to carry out complete installation in compliance with the defined methods and schedule.

Note

- Evaluate in advance whether the machine must interact with other production units, and that integration can be implemented correctly, in compliance with standards and without risks.
- The manager shall assign installation and assembly interventions ONLY to authorized technicians with acknowledged know-how.
- State of the art connections to power sources (electric, pneumatic, etc.)
 must be ensured, in compliance with relevant regulatory and legislative requirements.
- "State of the art" connection, alignment and leveling are essential to avoid additional interventions and to ensure correct machine function.
- Upon completion of the connections, run a general check to ascertain that all interventions have been correctly carried out and compliance with requirements.
- Failure to comply with the information provided might entail risks for the safety and health of people, and can cause economic loss.

Transport

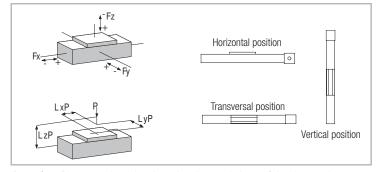
- Transport, also based on the final destination, can be done with different vehicles.
- Perform transport with suitable devices that have adequate loading capacity.
- Ensure that the machine and its components are adequately anchored to the vehicle.

Handling and lifting

- Correctly connect the lifting devices to the established points on the packages and/or on the dismantled parts.
- Before handling, read the instructions, especially safety instructions, provided in the installation manual, on the packages and/or on the dismantled parts.
- DO NOT attempt, in any way, to bypass handling methods and the established lifting, moving and handling points of each package and/or dismantled part.
- Slowly lift the package to the minimum necessary height and move it with the utmost caution to avoid dangerous oscillations.
- DO NOT perform handling with an inadequate visual field and when there are obstacles along the route to reach the final location.
- DO NOT allow people to either transit or linger within the range of action when lifting and handling loads.
- Do not stack packages to avoid damaging them, and reduce the risk of sudden and dangerous movements.
- In case of prolonged storage, regularly ensure that there are no variations in the storage conditions of the packages.

Check axis integrity after shipment

Every shipment is accompanied by a document ("Packing list") with the list and description of the axes.


- Upon receipt check that the material received corresponds to specifications in the delivery note.
- Check that packaging is perfectly intact and, for shipments without packaging, check that each axis is intact.
- In case of damages or missing parts, contact the manufacturer to define the relevant procedures.

Data sheet	
------------	--

General data:	Date: Inquiry N°:
Address:	Contact:
Company:	Zip Code:
Phone:	Fax:
E-Mail:	

Technical data:

				X axis	Y axis	Z axis
Useful stroke (Including safety overtravel)		S	[mm]			
Load to be translated		Р	[kg]			
Location of Load in the	X-Direction	LxP	[mm]			
	Y-Direction	LyP	[mm]			
	Z-Direction	LzP	[mm]			
Additional force	Direction (+/-)	Fx (Fy, Fz)	[N]			
Position of force	X-Direction	Lx Fx (Fy, Fz)	[mm]			
	Y-Direction	Ly Fx (Fy, Fz)	[mm]			
	Z-Direction	Lz Fx (Fy, Fz)	[mm]			
Assembly position (Horizontal/Vertical/Transversal						
Max. speed		V	[m/s]			
Max. acceleration		a	[m/s ²]			
Positioning repeatability		Δs	[mm]			
Required life		L	yrs			

Attention: Please enclose drawing, sketches and sheet of the duty cycle

Distributors for Australia & New Zealand MOTION TECHNOLOGIES PTY LIMITED

24/22-30 Northumberland Road Caringbah NSW 2229 Australia Phone: (02) 9524 4782

sales@motiontech.com.au www.motiontech.com.au © 13/07/2023

Consult the other ranges of products

All addresses of our global sales partners can also be found at www.rollon.com